【摘要】正弦定理正弦定理回憶一下直角三角形的邊角關(guān)系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??sinsin1sin?CCcBbAasinsinsin??即正弦定理,定理對任意
2024-11-25 11:59
【摘要】第一章解三角形§正弦定理和余弦定理1.正弦定理(一)自主學(xué)習(xí)知識梳理1.一般地,把三角形的三個(gè)角A,B,C和它們的對邊a,b,c叫做三角形的________.已知三角形的幾個(gè)元素求其他元素的過程叫做____________.2.在Rt△ABC中,C=90°,則有
2024-11-27 23:20
【摘要】正弦定理(二)自主學(xué)習(xí)知識梳理1.正弦定理:asinA=bsinB=csinC=2R的常見變形:(1)sinA∶sinB∶sinC=________;(2)asinA=bsinB=csinC=a+b+csinA+sinB+sinC=________;(3)a=____
2024-12-13 06:40
【摘要】余弦定理(二)自主學(xué)習(xí)知識梳理1.在△ABC中,邊a、b、c所對的角分別為A、B、C,則有:(1)A+B+C=________,A+B2=____________.(2)sin(A+B)=__________,cos(A+B)=__________,tan(A+B)=_______
2024-11-30 21:33
【摘要】正弦定理和余弦定理沈陽二中數(shù)學(xué)組高中數(shù)學(xué)⑤B版正弦定理第一節(jié)思考:在直角三角形中,“邊”與“角”的關(guān)系Rt中ABC?222abc??sin,sinacAbcB??sinsinabAB?sin1C?sinsinsinabc
【摘要】正弦定理(1)【學(xué)習(xí)目標(biāo)】1.通過對直角三角形邊角間數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理.2.能夠利用向量方法證明正弦定理,并運(yùn)用正弦定理解決兩類解三角形的簡單問題.【重點(diǎn)難點(diǎn)】1.重點(diǎn):正弦定理的發(fā)現(xiàn),證明及其簡單應(yīng)用.2.難點(diǎn):正弦定理的應(yīng)用.【學(xué)習(xí)過程】一、自主學(xué)習(xí):任務(wù)1:在直角三角形中三角形的邊與
2024-12-16 20:25
【摘要】正弦定理(2)【學(xué)習(xí)目標(biāo)】.,判斷三角形時(shí)解的個(gè)數(shù)..【重點(diǎn)難點(diǎn)】重點(diǎn):正弦定理的應(yīng)用.難點(diǎn):正弦定理的應(yīng)用.【學(xué)習(xí)過程】一、自主學(xué)習(xí):任務(wù)1:正弦定理:_______________________.任務(wù)2:正弦定理的變形公式:_____________________
2024-12-17 03:49
【摘要】正弦定理課件1、邊的關(guān)系:2、角的關(guān)系:3、邊角關(guān)系:1)兩邊之和大于第三邊;兩邊之差小于第三邊2)在直角三角形中:a2+b2=c21)A+B+C=1800CBAsin)sin()2??CBAcos)cos(???2cos2sinCBA??1)大邊對大角,大角對大邊,等邊
2024-11-25 05:41
【摘要】第一篇:必修⑤《》教案 必修⑤《正弦定理》教學(xué)設(shè)計(jì) 龍游縣橫山中學(xué)黃建金 u教材分析 正弦定理是必修⑤第一章開篇內(nèi)容,在已有知識的基礎(chǔ)上,進(jìn)一步對三角形邊角關(guān)系的研究,發(fā)現(xiàn)并掌握三角形中更準(zhǔn)確...
2024-11-09 05:04
【摘要】余弦定理(一)自主學(xué)習(xí)知識梳理1.余弦定理三角形中任何一邊的________等于其他兩邊的________的和減去這兩邊與它們的______的余弦的積的________.即a2=___________________,b2=__________________,c2=________________.2.余弦定
2024-12-06 12:00
【摘要】數(shù)列(二)自主學(xué)習(xí)知識梳理1.?dāng)?shù)列可以看作是一個(gè)定義域?yàn)開___________(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量按照從小到大的順序依次取值時(shí),對應(yīng)的一列________.2.一般地,一個(gè)數(shù)列{an},如果從________起,每一項(xiàng)都大于它的前一項(xiàng),即____________,
2024-11-27 05:04
【摘要】正弦定理A組基礎(chǔ)鞏固1.在△ABC中,已知b=40,c=20,C=60°,則此三角形的解的情況是()A.有一解B.有兩解C.無解D.有解但解的個(gè)數(shù)不確定解析:由正弦定理bsinB=csinC,得sinB=bsinCc=40×3220=31.∴
【摘要】第一篇:高中數(shù)學(xué)《正弦定理》教案新人教A版必修5(大全) 正弦定理 ●教學(xué)目標(biāo)知識與技能:通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會運(yùn)用正弦定理與三角形內(nèi)角和定理解斜...
2024-10-06 17:07
【摘要】§應(yīng)用舉例(二)自主學(xué)習(xí)知識梳理1.在△ABC中,有以下常用結(jié)論:(1)a+bc,b+ca,c+ab;(2)ab?________?____________;(3)A+B+C=π,A+B2=π2-C2;(4)sin(A+B)=_____
【摘要】【創(chuàng)新設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)(人教B版)必修5正弦定理雙基達(dá)標(biāo)限時(shí)20分鐘1.在△ABC中,若∠B=135°,AC=2,則BCsinA=().A.2B.1C.2D.22解析△ABC中,由正弦定理BCsin
2024-12-06 02:11