【摘要】習(xí)題課數(shù)列求和雙基達(dá)標(biāo)限時(shí)20分鐘1.設(shè)數(shù)列1,(1+2),(1+2+4),…,(1+2+22+…+2n-1)的前m項(xiàng)和為2036,則m的值為().A.8B.9C.10D.11解析an=2n-1,Sn=2n+1-n-2,代入選項(xiàng)檢驗(yàn)即得m=10.答
2024-12-05 23:54
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列角中,終邊與330°角終邊相同的是().A.-630°B.-1830°C.30°D.990°解析與330°角終邊相同的角α=330°+k·360°(k
2024-12-05 23:51
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.計(jì)算sin??????-π3的值為().A.-12C.32D.-32解析sin??????-π3=-sinπ3=-32.答案D2.計(jì)算sin2(π-α)-cos(π+α)cos(-α)+1的值是
2024-12-05 23:50
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.如果e1、e2是平面α內(nèi)所有向量的一組基底,那么下列命題正確的是().A.若實(shí)數(shù)λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對(duì)空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e
2024-12-05 23:46
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列量不是向量的是().A.力B.速度C.質(zhì)量D.加速度解析質(zhì)量只有大小,沒(méi)有方向,不是向量.答案C2.下列說(shuō)法錯(cuò)誤的是().A.向量AB→與BA→的長(zhǎng)度相等B.兩個(gè)相等的向量若起點(diǎn)相
2024-12-06 01:55
【摘要】數(shù)列的遞推公式(選學(xué))1.?dāng)?shù)列{an}滿足an+1=an+n,且a1=1,則a5的值為().A.9B.10C.11D.12解析a5=a4+4=a3+3+4=a2+2+3+4=a1+1+2+3+4=11.答案C2.已知數(shù)列{an}的首項(xiàng)為a1=1,且滿
【摘要】簡(jiǎn)單線性規(guī)劃雙基達(dá)標(biāo)限時(shí)20分鐘1.設(shè)x,y滿足?????2x+y≥4,x-y≥-1,x-2y≤2,則z=x+y().A.有最小值2,最大值3B.有最小值2,無(wú)最大值C.有最大值3,無(wú)最小值D.無(wú)最小值,也無(wú)最大值解析不等式組?????
【摘要】不等式的性質(zhì)雙基達(dá)標(biāo)限時(shí)20分鐘1.已知a,b,c,d∈R且ab0,-ca-db,則().A.bcadbd0,∴在-ca-db兩側(cè)乘ab不變號(hào),即-bc-ad,即bcad.答
2024-12-06 02:11
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)y=-sinx,x∈??????-π2,3π2的簡(jiǎn)圖是().解析由y=sinx與y=-sinx的圖象關(guān)于x軸對(duì)稱可知選D.答案D2.在[0,2π]內(nèi),不等式sinx-32的解集是().A.(0,
2024-12-05 23:47
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)y=3sin??????2x+π6的圖象的一條對(duì)稱軸方程是().A.x=0B.x=2π3C.x=-π6D.x=π3解析令sin??????2x+π6=±1,得2x+π6=kπ+π2(k∈Z),即x=k2π
2024-12-06 01:12
【摘要】不等關(guān)系與不等式雙基達(dá)標(biāo)限時(shí)20分鐘1.下面表示“a與b的差是非負(fù)數(shù)”的不等關(guān)系的是().A.a(chǎn)-b0B.a(chǎn)-b0C.a(chǎn)-b≥0D.a(chǎn)-b≤0答案C2.某隧道入口豎立著“限高”的警示牌,是指示司機(jī)要安全通過(guò)隧道,應(yīng)使車載貨物高度h滿足關(guān)系為().
【摘要】第一章解三角形§正弦定理和余弦定理1.正弦定理(一)自主學(xué)習(xí)知識(shí)梳理1.一般地,把三角形的三個(gè)角A,B,C和它們的對(duì)邊a,b,c叫做三角形的________.已知三角形的幾個(gè)元素求其他元素的過(guò)程叫做____________.2.在Rt△ABC中,C=90°,則有
2024-11-27 23:20
【摘要】正弦定理(二)自主學(xué)習(xí)知識(shí)梳理1.正弦定理:asinA=bsinB=csinC=2R的常見(jiàn)變形:(1)sinA∶sinB∶sinC=________;(2)asinA=bsinB=csinC=a+b+csinA+sinB+sinC=________;(3)a=____
2024-12-13 06:40
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.計(jì)算sin(-1380°)的值為().A.-12C.-32D.32解析sin(1380°)=sin[60°+(-4)×360°]=sin60°=32.答案
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.計(jì)算cos80°cos20°+sin80°·sin20°的值為().A.22B.32D.-22答案C2.設(shè)α∈??????0,π2,若sinα=35,則2cos