【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.計(jì)算sin??????-π3的值為().A.-12C.32D.-32解析sin??????-π3=-sinπ3=-32.答案D2.計(jì)算sin2(π-α)-cos(π+α)cos(-α)+1的值是
2024-12-05 23:50
【摘要】數(shù)列雙基達(dá)標(biāo)限時(shí)20分鐘1.下列幾個(gè)結(jié)論:①數(shù)列若用圖象表示,從圖象上看是一群孤立的點(diǎn);②數(shù)列的通項(xiàng)公式一定存在;③數(shù)列的通項(xiàng)公式的表示式是唯一的;④數(shù)列1,2,3和數(shù)列1,2,3,…是同一數(shù)列;⑤數(shù)列a,b,c與數(shù)列c,b,a一定不是同一數(shù)列.其中正確的是().A.①②④B.①
2024-12-05 23:54
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列量不是向量的是().A.力B.速度C.質(zhì)量D.加速度解析質(zhì)量只有大小,沒有方向,不是向量.答案C2.下列說法錯(cuò)誤的是().A.向量AB→與BA→的長度相等B.兩個(gè)相等的向量若起點(diǎn)相
2024-12-06 01:55
【摘要】習(xí)題課數(shù)列求和雙基達(dá)標(biāo)限時(shí)20分鐘1.設(shè)數(shù)列1,(1+2),(1+2+4),…,(1+2+22+…+2n-1)的前m項(xiàng)和為2036,則m的值為().A.8B.9C.10D.11解析an=2n-1,Sn=2n+1-n-2,代入選項(xiàng)檢驗(yàn)即得m=10.答
【摘要】不等式的性質(zhì)雙基達(dá)標(biāo)限時(shí)20分鐘1.已知a,b,c,d∈R且ab0,-ca-db,則().A.bcadbd0,∴在-ca-db兩側(cè)乘ab不變號,即-bc-ad,即bcad.答
2024-12-06 02:11
【摘要】§的教學(xué)設(shè)計(jì)【教學(xué)目標(biāo)】1、知識與技能目標(biāo):結(jié)合觀覽車的實(shí)例,了解周期、頻率、初相、相位的定義;會用五點(diǎn)法畫函數(shù)的簡圖;能借助多媒體課件,通過探索、觀察參數(shù)對函數(shù)圖象的影響,并概括出三角函數(shù)圖象各種變換的實(shí)質(zhì)和內(nèi)在規(guī)律.
【摘要】正弦型函數(shù)的圖象課堂教學(xué)設(shè)計(jì)教學(xué)目標(biāo)1、初步認(rèn)識振幅、周期、頻率、初相的概念,認(rèn)識正弦型函數(shù);2、會“五點(diǎn)作圖”作正弦型函數(shù)的圖象。例:、y=2sinx、y=sinx、、、等;3、能夠認(rèn)識以上這些函數(shù)與正弦函數(shù)圖象的關(guān)系,即它們是如何通過正弦函數(shù)圖象平移、伸縮而得到;4、明確的物理意義,把數(shù)學(xué)知
2024-11-26 16:45
【摘要】正弦型函數(shù)的圖像變換教學(xué)設(shè)計(jì)一、教學(xué)目標(biāo):知識與技能目標(biāo):能借助計(jì)算機(jī)課件,通過探索、觀察參數(shù)A、ω、φ對函數(shù)圖象的影響,并能概括出三角函數(shù)圖象各種變換的實(shí)質(zhì)和內(nèi)在規(guī)律;會用圖象變換畫出函數(shù)y=Asin(ωx+φ)的圖象。過程與方法目標(biāo):通過對探索過程的體驗(yàn),培養(yǎng)學(xué)生的觀察能力和探索問題的能力,數(shù)形結(jié)合的思想;領(lǐng)會從特殊到
【摘要】正弦函數(shù)的圖象與性質(zhì)(一)一.學(xué)習(xí)要點(diǎn):正弦函數(shù)的圖象和性質(zhì)二.學(xué)習(xí)過程:復(fù)習(xí):三角函數(shù)線的概念及作法:設(shè)任意角α的終邊與單位圓相交于點(diǎn)P(x,y),過P作x軸的垂線,垂足為M,則有向線段MP叫做角α的正弦線,有向線段OM叫做角α的余弦線.新課學(xué)習(xí):1.用單位圓中的正弦線作正弦函數(shù)的圖
【摘要】§正弦函數(shù)的性質(zhì)(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.請根據(jù)正弦函數(shù)圖象sinyx?的定義域是______;值域是______;當(dāng)x?______________時(shí),maxy?____;當(dāng)x=________________時(shí),miny?
2024-11-26 16:46
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.計(jì)算sin(-1380°)的值為().A.-12C.-32D.32解析sin(1380°)=sin[60°+(-4)×360°]=sin60°=32.答案
2024-12-05 23:51
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列角中,終邊與330°角終邊相同的是().A.-630°B.-1830°C.30°D.990°解析與330°角終邊相同的角α=330°+k·360°(k
【摘要】高一數(shù)學(xué)正切函數(shù)的圖像與性質(zhì)林銀玲目標(biāo)1、借助正切函數(shù)的圖像,說出正切函數(shù)的性質(zhì);2、能利用正切函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問題;自學(xué)指
【摘要】習(xí)題課正弦定理和余弦定理的應(yīng)用雙基達(dá)標(biāo)限時(shí)20分鐘1.在△ABC中,已知cosAcosBsinAsinB,則△ABC是().A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形解析cosAcosBsinAsinB?cos(A+B)0,∴A+B9
【摘要】正弦函數(shù)的圖象與性質(zhì)(四)一.學(xué)習(xí)要點(diǎn):正弦函數(shù)的性質(zhì)之奇偶性、單調(diào)性二.學(xué)習(xí)過程:復(fù)習(xí)1.正弦函數(shù)的圖象;2.正弦函數(shù)的周期性;3.正弦函數(shù)的定義域、值域.新課學(xué)習(xí):1.奇偶性由??sinsinxx???知:正弦函數(shù)sinyx?是,正弦曲線關(guān)于原點(diǎn)對稱.正弦