freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

生物統(tǒng)計與田間試驗方差分析-文庫吧資料

2024-09-06 18:24本頁面
  

【正文】 i1n Ti1 Ti 2 yi21 yi22 … yi2k … yi2n Ti2 j yij1 yij2 … yijk … yijn Tij m yim1 yim2 … yimk … yimn Tim … l … Tl ??????????????????表 二級系統(tǒng)分組資料個觀察值的數(shù)據(jù)結(jié)構(gòu) (i=1, 2, … , l; j=1, 2, … , m; k=1, 2, … , n) ??????ijy iy1iy2iyijyimy1y2yiylylmnTy ????? i j k ijkyT??? ? ?? ? 表 : i jkijii jky ???? ????(6這種試驗稱為 巢式試驗 ( nested experiment ) 。 如在此可有: ji yys ?)14(28 )7867(28222220 ?????????n)(88007425 頭. /. SE ??)(04117 4252 頭..sji yy????三、組內(nèi)又分亞組的單向分組資料的方差分析 單向分組資料,如果每組又分若干個亞組,而每個亞組內(nèi)又有若干個觀察值,則為 組內(nèi)分亞組的單向分組資料 ,或稱 系統(tǒng)分組資料 。 4321 ???? ??? F測驗顯著,再作平均數(shù)間的比較。23) (622) (6但亦可先算得各 ni 的平均數(shù) n0。19) (6 二、組內(nèi)觀察值數(shù)目不等的單向分組資料的方差分析 若 k個處理中的觀察值數(shù)目不等,分別為 n1, n2, … , nk,在方差分析時有關(guān)公式因 ni 不相同而需作相應(yīng)改變。進而進行多重比較 (表 )。 為了測驗 H0,計算處理間均方對誤差均方的比率,算得 F = 查 F表當(dāng) v1=4, v2=15時, =,現(xiàn)實得F=,故否定 H0, 推斷這個試驗的處理平均數(shù)間是有極顯著差異的。每處理 4盆 (施肥處理的施肥量每盆皆為折合純氮 ),共 5 4=20盆,隨機放置于同一網(wǎng)室中,其稻谷產(chǎn)量 (克 /盆 )列于表 ,試測驗各處理平均數(shù)的差異顯著性。 在作方差分析時,其任一觀察值的線性模型皆由 表示,方差分析如表 。所用的試驗設(shè)計為完全隨機試驗設(shè)計。 混合模型中的期望均方組成因包括有不同的成份,應(yīng)選擇恰當(dāng)?shù)木竭M行 F測驗。 混合模型 乃既包括有固定模型的試驗因素,又包括有隨機模型的試驗因素的模型。 代表了系間的表型變異, 因而可求出遺傳型變異占表型變異的份量,這就是數(shù)量遺傳中常用的遺傳率,即: 2?? 2??2?? 2?g?2?? 2?e?22 ?? eg ?? ?2222???eggh?????( 6 =測度了系統(tǒng)間變異。 0?2??0?2?? 0?2?? 隨機模型方差分析在數(shù)量遺傳學(xué)中的應(yīng)用 : 如果 F測驗顯著則表示處理間的變異是顯著的。 因而,隨機模型的假設(shè)為 H0: 對 HA: 。其單向分組分析結(jié)果見表 。 因而,一般比較處理效應(yīng)的試驗都應(yīng)當(dāng)采用固定模型 0?i?0?i? k??? ??? ?21 (二 ) 隨機模型 (random model) [例 ] 研究秈粳稻雜交 F5代系間單株干草重的遺傳變異,隨機抽取 76個系進行試驗,每系隨機取 2個樣品測定干草重(g/株 )。 22 ?? n?2?表 5個水稻品種產(chǎn)量的方差分析和期望均方表 變異來源 DF SS MS 期望均方 (EMS):固定模型 品 種 間 4 品種內(nèi) (試驗誤差 ) 10 1???ki22 ??為固定效應(yīng)的方差 本例中品種內(nèi) MS估計了 ,因而 ; 品種間 MS估計了 因而 2? 402? 2 .σ ?22 ?? n? 22 ?? ?? n)(? 2 ????固定模型的 F測驗 22222?????? ?nssFet ??? 0?i? 若 ,則 F值等于 1。而隨機模型中試驗結(jié)論則將用于推斷處理的總體 . i? )( μμi ??0?? i? 0?? iin ?2??i?i?2??(一 ) 固定模型( fixed model) [例 ] 以 5個水稻品種作大區(qū)比較試驗,每品種作 3次取樣,測定其產(chǎn)量,所得數(shù)據(jù)為單向分組資料。 i? i? 固定模型 是指各個處理的平均效應(yīng) 是固定的一個常量,且滿足 (或 ),但常數(shù)未知;主要是研究并估計處理效應(yīng);固定模型中所得的結(jié)論僅在于推斷關(guān)于特定的處理; 隨機模型 是指各個處理效應(yīng) 不是一個常量,而是從平均數(shù)為零、方差為 的正態(tài)總體中得到的一個隨機變量,即 ~ N(0, )?;?qū)憺椋? 22?? ??? 1kn i1????kns it222 ?? (6 因而 2? 對于 t i 部分,每一樣本的平方和是 ,故 k個樣本的平方和是 ,而處理間方差 st2為: 22 )( yynnt ii ??? ?????ki iki iyyntn1212 )(1)(1222?? ?????kyynktns iit(6 2i? 當(dāng)測驗 H0: 時,假定 和 , k??? ??? ?21 ???? ???? k?21222221 ???? ???? k?1)( ????nes njije i122可看作是總體 的無偏估計量。 ? i?ij?2?在以樣本符號表示時,樣本的線性組成為: ijiij etyy ??? (614) 其中, 為總體平均數(shù), 為試驗處理效應(yīng), 為隨機誤差具有分布 N(0, )。 第三節(jié) 方差分析的線性模型與期望均方 一、方差分析的線性數(shù)學(xué)模型 方差分析的理論依據(jù): 線性可加模型, 即總體每一個變量可以按其變異的原因分解成若干個線性組成部分。 ?五、多重比較方法的選擇 多重比較方法選用原則: ( 1)試驗事先確定比較的標準,凡與對照相比較,或與預(yù)定要比較的對象比較,一般可選用最小顯著差數(shù)法; ( 2)根據(jù)否定一個正確的 H0和接受一個不正確的 H0的相對重要性來決定。 DyByDy ByBy AyAy Cy表 表 (新復(fù)極差測驗 ) 處 理 苗 高 平均數(shù) (cm) 差異顯著性 D 29 a A B 23 b AB A 18 c BC C 14 c C 由表 ,該試驗除 A與 C處理無顯著差異外, D與 B及 A、 C處理間差異顯著性達到 =。 同理,可進行 4個在 1%水平上的顯著性測驗,結(jié)果列于表 。 ( 3)然后以 為標準與 相比呈顯著差異,故標 c。 ?? ( 1)在表 ,并在行上標 a。 ( 5)這樣各平均數(shù)間,凡有一個相同標記字母的即為差異不顯著,凡沒有相同標記字母的即為差異顯著。 ( 2)在最大的平均數(shù)上標上字母 a;將該平均數(shù)與以下各平均數(shù)相比,相差不顯著的,都標上字母 a,直至某一個與之相差顯著的平均數(shù)則標以字母 b(向下過程 ), ( 3)再以該標有 b的平均數(shù)為標準,與上方各個比它大的平均數(shù)比,凡不顯著的也一律標以字母 b(向上過程 ); 再以該標有 b的最大平均數(shù)為標準,與以下各未標記的平均數(shù)比,凡不顯著的繼續(xù)標以字母 b,直至某一個與之相差顯著的平均數(shù)則標以字母 c。 29cm(D) 23cm(B) 18cm(A) 14cm(C) 優(yōu)點 :直觀、簡單方便,所占篇幅也較少。這種方法稱劃線法。 (一 ) 列梯形表法 ???處理 平均數(shù) ( ) 差 異 - 14 - 18 - 23 D 29 15** 11** 6* B 23 9** 5* A 18 4 C 14 表 表 (新復(fù)極差測驗 ) iyiy iy iy優(yōu)點 :十分直觀, 缺點 :占篇幅較大,特別是處理平均數(shù)較多時。凡達到 =標一個“ *”號,凡達到 =標兩個“ *”號 ,凡未達到 =記。 BD yy ?AB yy ?CA yy ?AD yy ?CB yy ?CD yy ? 結(jié)論:表 4個處理的苗高,除處理 A與 C差異不顯著外,其余處理間均達顯著差異,本例結(jié)果與上面介紹的 q測驗法相同,但 q法的 要比新復(fù)極差法的 大。 當(dāng) p=3時, =11(cm) 1%水平上顯著; =9(cm) 1%水平上顯著。13)算得在 p=2, 3, 4時的值 (表),即為測驗不同 p時的平均數(shù)間極差顯著性的尺度值。13) 此時,在不同秩次距 p下,平均數(shù)間比較的顯著水平按兩兩比較是 ,但按 p個秩次距則為保護水平 ?1????? p)(11 ??[例 ] 試對表 。 Dy ByAy CyBD yy ?AB yy ?CA yy ?AD yy ?CD yy ?CB yy ?三、新復(fù)極差法 新復(fù)極差法 是 . Duncan(1955)基于不同秩次距 p下的最小顯著極差變幅比較大而提出的,又稱 最短顯著極差法 ( shortest significant ranges, SSR )。 當(dāng) p=3時, =11(cm) 1% 水平上顯著; =9(cm) 1% 水平上顯著。 ?q?LSRp 2 3 4 表 表 值的計算 (q測驗 ) ?LSR由表 , =29cm, =23cm, =18cm, =14cm。 由 : 4314 2 9 214178 .././nMSSE e ???? 查附表 7 q值表,當(dāng) DF=12時 , p=2, 3, 4的 值,并由 (6 平均數(shù)比較時,尺度值隨秩次距的不同而異。12) 式中 2≤p≤k, p是所有比較的平均數(shù)按大到小順序排列所計算出的兩極差范圍內(nèi)所包含的平均數(shù)個數(shù) (稱為 秩次距 )。 ?LSR? q測驗尺度值構(gòu)成為: SEqL S R pdf ,;?? ?(6 q法是將一組 k個平均數(shù)由大到小排列后,根據(jù)所比較的兩個處理平均數(shù)的差數(shù)是幾個平均數(shù)間的極差分別確定最小顯著極差值 的。 由 (例 )計算得 F=, MSe=, DFe=12, 故 )( cm0224 1782 ..sji yy????由附表 4, v =12時, =, = 故 = =(cm) = =(cm) 然后將各種藥劑處理的苗高與對照苗高相比,差數(shù)大于 ;大于 。9)中 的為: ji yys ?eMSnMSs eyy ji
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1