【摘要】應(yīng)用舉例(第2課時(shí))學(xué)習(xí)目標(biāo)、余弦定理等知識(shí)和方法解決一些有關(guān)底部不可到達(dá)的物體高度測(cè)量的問(wèn)題..可以在溫故知新中學(xué)會(huì)正確識(shí)圖、畫(huà)圖、想圖,逐步構(gòu)建知識(shí)框架.、應(yīng)用數(shù)學(xué)的意識(shí)及觀察、歸納、類(lèi)比、概括的能力.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境塞樂(lè)斯生于公元前624年,是古希臘第一位聞名世界的大數(shù)學(xué)家.他原是一位
2024-12-13 03:48
【摘要】應(yīng)用舉例(第1課時(shí))學(xué)習(xí)目標(biāo)、余弦定理等知識(shí)和方法解決一些有關(guān)測(cè)量距離的實(shí)際問(wèn)題,了解常用的測(cè)量相關(guān)術(shù)語(yǔ).;同時(shí)提升運(yùn)用圖形、數(shù)學(xué)符號(hào)表達(dá)題意和應(yīng)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題的能力.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境問(wèn)題1:在日常生活和工農(nóng)業(yè)生產(chǎn)中,為了達(dá)到某種目的,常常想測(cè)得一個(gè)點(diǎn)與另一個(gè)不可到達(dá)的點(diǎn)間的距離或在遠(yuǎn)處的
【摘要】應(yīng)用舉例(第3課時(shí))學(xué)習(xí)目標(biāo)、余弦定理等知識(shí)和方法解決一些有關(guān)計(jì)算角度的實(shí)際問(wèn)題.,在對(duì)解法有了基本了解的基礎(chǔ)上,通過(guò)綜合訓(xùn)練強(qiáng)化相應(yīng)的能力.、正確分析問(wèn)題、獨(dú)立解決問(wèn)題的能力,并在學(xué)習(xí)過(guò)程中發(fā)揚(yáng)探索精神.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境提問(wèn):前面我們學(xué)習(xí)了如何測(cè)量距離和高度,這些實(shí)際上都可轉(zhuǎn)化為已知三角形的一些
【摘要】正、余弦定理在實(shí)際中的應(yīng)用A組基礎(chǔ)鞏固1.如圖,在一幢20m高的樓頂測(cè)得對(duì)面一塔頂部的仰角為60°,塔基的俯角為45°,則這座塔的高度是()A.20??????1+33mB.20(1+3)mC.10(6+2)mD.20(6+2)m解析:如圖,過(guò)點(diǎn)A
2024-12-12 20:24
【摘要】正余弦定理及其應(yīng)用的教案教學(xué)目標(biāo)(一)知識(shí)與能力目標(biāo)1.通過(guò)對(duì)正余弦定理的應(yīng)用,加深對(duì)正余弦定理的理解.會(huì)用正余弦定理解三角形.(1)已知兩角和任一邊,求其它兩邊和一角.(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角及其它的邊和角.(3)已知三邊,用余弦定理,必有唯一解;(4)已知兩邊及其中一邊
【摘要】等比數(shù)列(第2課時(shí))學(xué)習(xí)目標(biāo)靈活應(yīng)用等比數(shù)列的定義及通項(xiàng)公式;深刻理解等比中項(xiàng)的概念;熟悉等比數(shù)列的有關(guān)性質(zhì),并系統(tǒng)了解判斷數(shù)列是否是等比數(shù)列的方法.通過(guò)自主探究、合作交流獲得對(duì)等比數(shù)列性質(zhì)的認(rèn)識(shí).充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型,體會(huì)數(shù)學(xué)是來(lái)源于現(xiàn)實(shí)生活,并應(yīng)用于現(xiàn)實(shí)生活的,數(shù)學(xué)是豐富多彩的而不是枯燥無(wú)味的,提高學(xué)習(xí)的興趣.合
2024-12-13 03:42
【摘要】課件解應(yīng)用題中的幾個(gè)角的概念1、仰角、俯角的概念:在測(cè)量時(shí),視線(xiàn)與水平線(xiàn)所成的角中,視線(xiàn)在水平線(xiàn)上方的角叫仰角,在水平線(xiàn)下方的角叫做俯角。如圖:2、方向角:指北或指南方向線(xiàn)與目標(biāo)方向線(xiàn)所成的小于90°的水平角,叫方向角,如圖測(cè)量問(wèn)題:1、水平距離的測(cè)量①兩點(diǎn)間不能到
2024-11-21 11:59
【摘要】基本不等式:(第2課時(shí))學(xué)習(xí)目標(biāo)(a0,b0).(小)值問(wèn)題..合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境問(wèn)題1:用籬笆圍成一個(gè)面積為100m2的矩形菜園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用籬笆最短.最短的籬笆是多少?問(wèn)題2:用長(zhǎng)為4a的籬笆圍成一個(gè)矩形菜園ABCD
2024-12-12 20:20
【摘要】第一篇:高中數(shù)學(xué)新人教A版必修5 課題:§ ●教學(xué)目標(biāo)知識(shí)與技能:能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法進(jìn)一步解決有關(guān)三角形的問(wèn)題,掌握三角形的面積公式的簡(jiǎn)單推導(dǎo)和應(yīng)用過(guò)程與方法:本節(jié)課補(bǔ)充了三角...
2024-10-28 16:07
【摘要】等差數(shù)列(第1課時(shí))學(xué)習(xí)目標(biāo)掌握等差數(shù)列的概念;理解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項(xiàng)公式解決相應(yīng)的一些問(wèn)題.讓學(xué)生親身經(jīng)歷“從特殊入手,研究對(duì)象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過(guò)程,培養(yǎng)他們觀察、分析、歸納、推理的能力.通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生
2024-12-12 20:23
【摘要】等比數(shù)列(第1課時(shí))學(xué)習(xí)目標(biāo),理解等比數(shù)列的概念.,明確一個(gè)數(shù)列是等比數(shù)列的限定條件;能夠運(yùn)用類(lèi)比的思想方法得到等比數(shù)列的定義,會(huì)推導(dǎo)等比數(shù)列的通項(xiàng)公式.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境:定義:通項(xiàng)公式:an=a1+(n-1)d,(n∈N*).前n項(xiàng)和公式:Sn==na1+d,(n∈
2024-12-12 07:03
【摘要】不等關(guān)系與不等式(第2課時(shí))學(xué)習(xí)目標(biāo)...合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境問(wèn)題1:等式的性質(zhì)有哪些?請(qǐng)大家用符號(hào)表示出來(lái).問(wèn)題2:根據(jù)等式的這些性質(zhì),你能猜想不等式的類(lèi)似性質(zhì)嗎?請(qǐng)大家加以探究.二、信息交流,揭示規(guī)律問(wèn)題3:上面得到的結(jié)論是否正確,需要我們給出證明
2024-12-13 03:41
【摘要】基本不等式:(第1課時(shí))學(xué)習(xí)目標(biāo),用數(shù)形結(jié)合的思想理解基本不等式...合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境第24屆國(guó)際數(shù)學(xué)家大會(huì)于2021年在北京召開(kāi),右面是大會(huì)的會(huì)標(biāo),其中的圖案大家見(jiàn)過(guò)嗎?在此圖中有哪些幾何圖形?你能發(fā)現(xiàn)圖形中隱含的不等關(guān)系嗎?若我們?cè)O(shè)圖中直角三角形的直角邊分別為x,y,你
2024-12-12 02:40
【摘要】數(shù)列的概念與簡(jiǎn)單表示法(第2課時(shí))學(xué)習(xí)目標(biāo)了解數(shù)列的遞推公式,明確遞推公式與通項(xiàng)公式的異同;會(huì)根據(jù)數(shù)列的遞推公式寫(xiě)出數(shù)列的前幾項(xiàng);經(jīng)歷數(shù)列知識(shí)的感受及理解運(yùn)用的過(guò)程;通過(guò)本節(jié)課的學(xué)習(xí),體會(huì)數(shù)學(xué)來(lái)源于生活,從而提高學(xué)習(xí)數(shù)學(xué)的興趣.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境,數(shù)列既然是按一定順序排列的一列數(shù),有些數(shù)列能夠?qū)懗鲆粋€(gè)
【摘要】正余弦定理的應(yīng)用1、角的關(guān)系2、邊的關(guān)系3、邊角關(guān)系?180???CBAcbacba????,大角對(duì)大邊大邊對(duì)大角三角形中的邊角關(guān)系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2024-11-22 12:09