【摘要】第一篇:高中立體幾何證明方法 高中立體幾何 一、平行與垂直關(guān)系的論證 由判定定理和性質(zhì)定理構(gòu)成一套完整的定理體系,在應(yīng)用中:低一級位置關(guān)系判定高一級位置關(guān)系;高一級位置關(guān)系推出低一級位置關(guān)系,前...
2024-10-28 20:01
【摘要】第一篇:高中立體幾何 高中立體幾何的學(xué)習(xí) 高中立體幾何的學(xué)習(xí)主要在于培養(yǎng)空間抽象能力的基礎(chǔ)上,發(fā)展學(xué)生的邏輯思維能力和空間想象能力。立體幾何是中學(xué)數(shù)學(xué)的一個難點,學(xué)生普遍反映“幾何比代數(shù)難學(xué)”。但...
2024-11-15 06:58
【摘要】立體幾何——平行的證明【例1】如圖,四棱錐P-ABCD的底面是平行四邊形,點E、F分別為棱AB、PD的中點.求證:AF∥平面PCE;(第1題圖)分析:取PC的中點G,連EG.,F(xiàn)G,則易證AEGF是平行四邊形【例2】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G
2025-03-29 05:42
【摘要】1、已知正方體,是底對角線的交點.求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
【摘要】第一篇:高中立體幾何證明平行的專題訓(xùn)練) 高中立體幾何證明平行的專題訓(xùn)練 深圳市龍崗區(qū)東升學(xué)校——羅虎勝 立體幾何中證明線面平行或面面平行都可轉(zhuǎn)化為線線平行,而證明線線平行一般有以下的一些方法:...
2024-11-16 23:32
【摘要】立體幾何中的公理、定理和常用結(jié)論一、定理1.公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi).若A∈l,B∈l,A∈a,B∈a,則l?a.2.公理2如果兩個平面有一個公共點,那么它們還有其他公共點,這些公共點的集合是經(jīng)過這個公共點的一條直線.P∈a,P∈aTa∩b=l,且P∈l.3.公理3經(jīng)過不在同一條直線上的三點,有且只
2025-06-26 16:12
【摘要】廣元外國語學(xué)校高一數(shù)學(xué)必修2立體幾何測試題試卷滿分:150分考試時間:120分鐘班級___________姓名__________學(xué)號_________分數(shù)___________第Ⅰ卷一、選擇題(每小題5分,共60分)1、線段在平面內(nèi),則直線與平面的位置關(guān)系是A、B、C、由線段的長短而定D、以上都不對2、下列說法正確的是
【摘要】第一篇:高中立體幾何中線面平行的常見方法 高中立體幾何證明平行的專題訓(xùn)練 立體幾何中證明線面平行或面面平行都可轉(zhuǎn)化為線線平行,而證明線線平行一般有以下的一些方法: (1)通過“平移”。 (2)...
【摘要】高中平面解析幾何公式,hero52制作,與大家共勉,08年我們一起取得好成績。初中幾何全部定理、公式1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條
2025-06-29 21:49
【摘要】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉(zhuǎn)化與聯(lián)系: 應(yīng)用判定定理時,注意由“低維”到“高維”:“線線...
2024-11-15 05:58
【摘要】第一篇:高中立體幾何最佳解題方法及考題詳細解答 高中立體幾何最佳解題方法總結(jié) 一、線線平行的證明方法 1、利用平行四邊形; 2、利用三角形或梯形的中位線; 3、如果一條直線和一個平面平行,經(jīng)...
2024-10-28 17:51
【摘要】高中立體幾何典型習(xí)題及解析(二)26.在空間四邊形ABCD中,E,H分別是AB,AD的中點,F(xiàn),G分別是CB,CD的中點,若AC+BD=a,ACBD=b,求.解析:四邊形EFGH是平行四邊形,…………(4分)=2=27.如圖,在三角形⊿ABC中,∠ACB=90o,AC=b,BC=a,P是⊿ABC所在平面外一點,PB⊥AB,M是PA的中點,A
2025-01-17 12:46
【摘要】高中立體幾何知識點總結(jié)一、空間幾何體(一)空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)體的軸。(二
2025-06-27 15:17
【摘要】第一篇:立體幾何的證明方法1] 立體幾何的證明方法總結(jié) 文字語言表述部分: 一、線線平行的證明方法 1、利用平行四邊形; 2、利用三角形或梯形的中位線; 3、如果一條直線和一個平面平行,經(jīng)...
2024-11-15 05:28
【摘要】第一篇:立體幾何常見證明方法 立體幾何方法歸納小結(jié) 一、線線平行的證明方法 1、根據(jù)公理4,證明兩直線都與第三條直線平行。 2、根據(jù)線面平行的性質(zhì)定理,若直線a平行于平面A,過a的平面B與平面...
2024-11-15 05:33