【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《正弦余弦應(yīng)用舉例》審校:王偉教學(xué)目標(biāo)?1、能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)測(cè)量距離的實(shí)際問(wèn)題,了解常用的測(cè)量相關(guān)術(shù)語(yǔ)?2、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值;同時(shí)培養(yǎng)學(xué)生運(yùn)用圖形、數(shù)學(xué)符號(hào)表達(dá)題意和應(yīng)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題的能力?
2024-11-16 16:42
【摘要】例3AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測(cè)量建筑物高度AB的方法分析:由于建筑物的底部B是不可到達(dá)的,所以不能直接測(cè)量出建筑物的高。由解直角三角形的知識(shí),只要能測(cè)出一點(diǎn)C到建筑物的頂部A的距離CA,并測(cè)出由點(diǎn)C觀察A的仰角,就可以計(jì)算出建筑物的高。所以應(yīng)該設(shè)法借助解三角形的知識(shí)測(cè)出CA的長(zhǎng)。)
2024-08-27 01:09
【摘要】第八節(jié)正、余弦定理的應(yīng)用基礎(chǔ)梳理解三角形(1)解三角形:__________________________________________________________________________________________________________________________________________________.
【摘要】§半角的正弦、余弦和正切凌海市第三高級(jí)中學(xué)李桂艷課題引入:同學(xué)們聽(tīng)說(shuō)過(guò)“蝴蝶效應(yīng)”嗎?是說(shuō)南美洲熱帶雨林中的一只蝴蝶,偶爾扇動(dòng)幾下翅膀,可能會(huì)引起北美洲德克薩斯的一場(chǎng)龍卷風(fēng)??雌饋?lái)毫不相干事物都會(huì)有這樣的聯(lián)系,
2024-11-16 16:45
【摘要】§ 正弦定理、余弦定理應(yīng)用舉例在三角形的6個(gè)元素中要已知三個(gè)(除三角外)才能求解,常見(jiàn)類型及其解法如表所示.已知條件應(yīng)用定理一般解法一邊和兩角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b與c.在有解時(shí)只有一解兩邊和夾角(如a,b,C)余弦定理正弦定理由余弦定理求第三邊c
2025-07-01 04:30
【摘要】2013高考數(shù)學(xué)備考訓(xùn)練-正弦定理和余弦定理應(yīng)用舉例一、選擇題1.從A處望B處的仰角為α,從B處望A處的俯角為β,則α,β之間的關(guān)系是( )A.αβ B.α=βC.α+β=90°D.α+β=180°答案 B2.如圖,在河岸AC測(cè)量河的寬度BC,圖中所標(biāo)的數(shù)據(jù)a,b,c,α,β是可供測(cè)量的數(shù)據(jù).下面給出的四組數(shù)據(jù)中,
2025-06-10 23:38
【摘要】正弦定理及應(yīng)用曲靖師范學(xué)院數(shù)學(xué)系主講人:黎華榮一、引言:在直角三角形中,由三角形內(nèi)角和定理、勾股定理、銳角三角函數(shù),可以由已知的邊和角求出未知的邊和角。那么斜三角形怎么辦?二、講解新課:正弦定理的應(yīng)用,求其它兩邊和一角;,求另一邊的對(duì)角,進(jìn)而可求其它的邊和角。
2024-11-16 17:11
【摘要】第一節(jié)數(shù)學(xué)歸納法及其應(yīng)用舉例(三)第二章極限12C2.在用數(shù)學(xué)歸納法證明多邊形內(nèi)角和定理時(shí),第一步應(yīng)驗(yàn)證()(A)n=1時(shí)成立(B)n=2時(shí)成立(C)n=3時(shí)成立(D)n=
2024-11-16 16:44
【摘要】正弦定理和余弦定理的應(yīng)用舉例考點(diǎn)梳理1.用正弦定理和余弦定理解三角形的常見(jiàn)題型測(cè)量距離問(wèn)題、高度問(wèn)題、角度問(wèn)題、計(jì)算面積問(wèn)題、航海問(wèn)題、物理問(wèn)題等.2.實(shí)際問(wèn)題中的常用角(1)仰角和俯角與目標(biāo)線在同一鉛垂平面內(nèi)的水平視線和目標(biāo)視線的夾角,目標(biāo)視線在水平視線上方的角叫仰角,目標(biāo)視線在水平視線下方的角叫俯角(如圖①).(2)方向角:相對(duì)于某正方向的水平角,
2025-06-27 02:22
【摘要】正切函數(shù)圖像性質(zhì)1.正切函數(shù)y=tanx,(1)定義域:{x∈R|}??zkkx???2??(2)正切函數(shù)的周期??????sinsintantancoscosxxxxxx???????????
2024-11-13 01:26
【摘要】直角三角形中:1sin,sin,sin???CcbBcaAABCabcCccBbcAacsin,sin,sin???即CcBbAasinsinsin???斜三角形中這一關(guān)系式是否仍成立呢?(1)銳角三角形(2)鈍角三角形jABCjA
2024-08-27 02:39
【摘要】例1、如圖,,兩地之間隔著一個(gè)水塘,現(xiàn)選擇另一個(gè)點(diǎn),測(cè)得,求,兩地之間的距離(精確到1)。ABC182,126,63oCAmCBmACB????ABm(見(jiàn)教材第14頁(yè)例2)ABCA
2024-12-04 12:35
【摘要】應(yīng)用舉例解決有關(guān)測(cè)量距離的問(wèn)題1、正弦定理:2、余弦定理:二、應(yīng)用:一、定理內(nèi)容:求三角形中的某些元素解三角形實(shí)例講解分析:在本題中直接給出了數(shù)學(xué)模型(三角形),要求A、B間距離,相當(dāng)于在三角形中求某一邊長(zhǎng)?想一想例1、如下圖,設(shè)A、B兩點(diǎn)在河的兩岸,要測(cè)量?jī)牲c(diǎn)之間的距離
2024-11-14 22:29
【摘要】[答案](1)2-64(2)6-24(3)sinα[解析](1)cos105°=cos(60°+45°)=cos60°cos45°-sin60°sin45°=12·2
【摘要】正弦定理、余弦定理的應(yīng)用(2)例1、自動(dòng)卸貨汽車(chē)的車(chē)箱采用液壓機(jī)構(gòu)。設(shè)計(jì)時(shí)需要計(jì)算油泵頂杠BC的長(zhǎng)度(如圖所示)。已知車(chē)箱的最大仰角為,油泵頂點(diǎn)B與車(chē)箱支點(diǎn)A之間的距離為,AB與水平線之間的夾角為,AC長(zhǎng)為,計(jì)算BC的長(zhǎng)(保留三個(gè)有效數(shù)字)。?60'206?
2024-07-30 20:47