【摘要】立體幾何平行證明題二、平面與平面平行:)//,:(//::1??????????則若用符號(hào)表示為記為平行與平面則稱平面沒有公共點(diǎn)與平面平面定義???,、2、判定方法??????????////////:??????????或其它方法aa②baba,、///
2024-08-16 09:40
【摘要】新課標(biāo)立體幾何??甲C明題匯總1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點(diǎn)∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-03-28 06:44
【摘要】1、垂直于同一條直線的兩條直線一定A、平行B、相交C、異面D、以上都有可能2、a,b,c表示直線,M表示平面,給出下列四個(gè)命題:①若a∥M,b∥M,則a∥b;②若bM,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥M,b⊥M,則a∥ A、0個(gè) B、1個(gè)
2025-03-28 02:03
【摘要】1、已知正方體,是底對(duì)角線的交點(diǎn).求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
2025-03-29 05:42
【摘要】文科立體幾何證明線面、面面平行,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).①證明MN∥平面PAB;②求四面體N-BCM的體積.2.如圖,四棱錐P-ABCD中,AD∥BC,AB=BC=AD,E,F(xiàn),H分別為線段AD,PC
2025-03-28 03:14
【摘要】立體幾何證明平行專題訓(xùn)練命題:***1.如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)2、如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點(diǎn),現(xiàn)將△ADE沿AE折疊,使得D
【摘要】立體幾何??甲C明題1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。AHGFEDCB2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-07 05:15
【摘要】立體幾何證明題考點(diǎn)1:點(diǎn)線面的位置關(guān)系及平面的性質(zhì):①空間不同三點(diǎn)確定一個(gè)平面;②有三個(gè)公共點(diǎn)的兩個(gè)平面必重合;③空間兩兩相交的三條直線確定一個(gè)平面;④三角形是平面圖形;⑤平行四邊形、梯形、四邊形都是平面圖形;⑥垂直于同一直線的兩直線平行;⑦一條直線和兩平行線中的一條相交,也必和另一條相交;⑧兩組對(duì)邊相等的四邊形是平行四邊形.其中正確的命題是___
【摘要】必修二立體幾何經(jīng)典證明試題1.如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn)(I)證明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.CBADC1A11.【解析】(Ⅰ)由題設(shè)知BC⊥,BC⊥AC,,∴面,又∵面,∴,由題設(shè)知,∴=,即
【摘要】立體幾何??甲C明題匯總考點(diǎn)1:證平行(利用三角形中位線),異面直線所成的角已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角??键c(diǎn)2:線面垂直,面面垂直的判定如圖,已知空間四邊形中,,是的中點(diǎn)。
2025-04-07 05:14
【摘要】第一篇:立體幾何的平行與證明問題 立體幾何 1.知識(shí)網(wǎng)絡(luò) 一、經(jīng)典例題剖析 考點(diǎn)一點(diǎn)線面的位置關(guān)系 1、設(shè)l是直線,a,β是兩個(gè)不同的平面() A.若l∥a,l∥β,則a∥βB.若l∥a,...
2024-11-16 23:04
【摘要】立體幾何——平行的證明【例1】如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)分析:取PC的中點(diǎn)G,連EG.,F(xiàn)G,則易證AEGF是平行四邊形【例2】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G
【摘要】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【摘要】立體幾何垂直證明題常見模型及方法垂直轉(zhuǎn)化:線線垂直線面垂直面面垂直;基礎(chǔ)篇類型一:線線垂直證明(共面垂直、異面垂直)(1)共面垂直:實(shí)際上是平面內(nèi)的兩條直線的垂直(只需要同學(xué)們掌握以下幾種模型)等腰(等邊)三角形中的中線菱形(正方形)的對(duì)角線互相垂直勾股定理中的三角形1:1
2025-03-27 04:14