【摘要】WORD資料可編輯圓錐曲線綜合應用及光學性質(zhì)(通用)一、選擇題(本大題共12小題,每小題5分,共60分)1.二次曲線,時,該曲線的離心率e的取值范圍是 () A. B. C. D.2.我國發(fā)射的“神舟3號”宇宙飛船的運行軌道是以地球的中心為
2025-06-27 03:56
【摘要】WORD資料可編輯圓錐曲線光學性質(zhì)的證明及應用初探一、圓錐曲線的光學性質(zhì)1.1 橢圓的光學性質(zhì):從橢圓一個焦點發(fā)出的光,經(jīng)過橢圓反射后,反射光線都匯聚到橢圓的另一個焦點上;()橢圓的這種光學特性,常被用來設(shè)計一些照明設(shè)備或聚熱裝置.例如在處放置一個熱源,那
2025-06-25 16:01
【摘要】利用反證法證明圓錐曲線的光學性質(zhì)迤山中學數(shù)學組賈浩利用反證法證明圓錐曲線的光學性質(zhì)反證法又稱歸謬法,是高中數(shù)學證明中常用的一種方法。利用反證法證明問題的思路為:首先在原命題的條件下,假設(shè)結(jié)論的反面成立,然后推理出明顯矛盾的結(jié)果,從而說明假設(shè)不成立,則原命題得證。在光的折射定律中,從點發(fā)出的光經(jīng)過直線折射后,反射光
2025-06-25 15:52
【摘要】......圓錐曲線的性質(zhì)一、基礎(chǔ)知識(一)橢圓:1、定義和標準方程:(1)平面上到兩個定點的距離和為定值(定值大于)的點的軌跡稱為橢圓,其中稱為橢圓的焦點,稱為橢圓的焦距(2)標準方程:①焦點在軸上的橢
【摘要】焦半徑公式:若點是拋物線上一點,則該點到拋物線的焦點的距離(稱為焦半徑)是:,焦點弦長公式:過焦點弦長拋物線上的動點可設(shè)為P或或P已知拋物線,過焦點F的直線交拋物線于A、B兩點,直線的傾斜角為,求證:。直線與拋物線的位置關(guān)系把直線的方程和拋物線的方程聯(lián)立起來得到一個方程組。(1)方程組有一組解直線與拋物線相交或相切(一個公共點);(2)方程組有二組解直線與
2024-08-05 00:13
【摘要】圓錐曲線的性質(zhì)及推廣應用江西省撫州一中:張志恒目錄1引言 32圓錐曲線的分類,性質(zhì)及應用 4圓錐曲線的分類 4圓錐曲線的性質(zhì) 5圓錐曲線在生活中的應用 83圓錐曲線性質(zhì)的推廣應用 11直線與圓錐曲線的位置關(guān)系的實際應用 11數(shù)學問題在圓錐曲線中的推廣 13
2024-08-05 12:41
【摘要】圓錐曲線的幾何性質(zhì)xyoF11F2AB一、橢圓的幾何性質(zhì)(以+=1(a﹥b﹥0)為例) 1、⊿ABF2的周長為4a(定值)證明:由橢圓的定義即 2、焦點⊿PF1F2中:xyoF1F22P(1)S⊿PF1F2=(2)(S⊿PF1F2)max=bc(3)當P在短軸上時,∠F1PF2最大證明:
2024-08-16 04:45
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2024-08-05 00:15
【摘要】1.已知橢圓(a>b>0),O為坐標原點,P、Q為橢圓上兩動點,(1);(2)|OP|2+|OQ|2的最大值為;(3)的最小值是.圓錐曲線性質(zhì)對比橢圓雙曲線焦點三角形面積兩斜率乘積定值A(chǔ)B是橢圓的不平行于對稱軸的弦,M為AB的中點,則,即AB是雙曲線(a>0,b>0)的不平行于對稱軸的弦,M為AB的中點
2025-06-27 03:53
【摘要】WORD資料可編輯“圖形計算器與高中數(shù)學教學整合研究”課題教學設(shè)計案例、論文評選“類圓錐曲線”性質(zhì)的探究上海南匯中學李志鳳杰一、問題的提出學習解析幾何,我們知道曲線的圖像是圓,曲線的圖像是等軸雙曲線,而對于一般情況,曲線的圖像是什么?它們有什么
2025-04-10 07:30
【摘要】WORD資料可編輯橢圓與雙曲線的對偶性質(zhì)--(必背的經(jīng)典結(jié)論)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦P
2025-04-20 13:13
【摘要】數(shù)學學科2012學年年度論文地址:佛山市順德區(qū)陳村鎮(zhèn)青云中學姓名:匡德智電話:13790039227圓錐曲線中的四點共圓性質(zhì)的應用引理:設(shè)兩條直線()與二次曲線:()有四個交點,則這四個交點共圓的充要條件是證明:由、組成的曲線即:,所以,經(jīng)過它與的四個交點
2025-06-25 23:13
【摘要】第五節(jié)圓錐曲線的綜合應用1.圓錐曲線的統(tǒng)一定義:平面內(nèi)到__________________________________________________________________是圓錐曲線,當________時,軌跡是橢圓;當________時,軌跡是雙曲線;當________時,軌跡表示拋物線,定點F是圓錐曲線的一個________
2024-11-16 18:19
【摘要】第64講圓錐曲線的綜合應用,第一頁,編輯于星期五:十六點五十七分。,第二頁,編輯于星期五:十六點五十七分。,第三頁,編輯于星期五:十六點五十七分。,第四頁,編輯于星期五:十六點五十七分。,第五頁,編輯...
2024-10-24 06:27
【摘要】圓錐曲線的解題技巧一、常規(guī)七大題型:(1)中點弦問題具有斜率的弦中點問題,常用設(shè)而不求法(點差法):設(shè)曲線上兩點為,,代入方程,然后兩方程相減,再應用中點關(guān)系及斜率公式(當然在這里也要注意斜率不存在的請款討論),消去四個參數(shù)。如:(1)與直線相交于A、B,設(shè)弦AB中點為M(x0,y0),則有。(2)與直線l相交于A、B,設(shè)弦AB中點為M(x0,y0
2025-03-28 00:04