【摘要】立體幾何大題專練1、如圖,已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點(diǎn);(1)求證:MN//平面PAD(2)若∠PDA=45°,求證:MN⊥平面PCD2(本小題滿分12分)如圖,在三棱錐中,分別為的中點(diǎn).PACEBF(1)求證:平面;(2)若平面平面,且,,求證:平面平面.(1)證明:連
2025-06-26 03:46
【摘要】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用
2024-08-04 12:10
【摘要】立體幾何練習(xí)題、β、γ為兩兩不重合的平面,l、m、n為兩兩不重合的直線,給出下列四個命題:若α⊥γ,β⊥γ,則α∥β;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,l?α,則l∥β;④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.其中真命題的個數(shù)是() A.1 B.2 C.3 D.4﹣A1B1C1D1中,BD1與平面ABCD所成角的余弦值為
2025-03-28 06:44
【摘要】ABCDEFPM..1、如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,(1)線段的中點(diǎn)為,線段的中點(diǎn)為,求證:;(2)求直線與平面所成角的正切值.解:(1)取的中點(diǎn)為,連,,則,面//面,………………………5分(2)先證出面,
2025-06-25 01:32
【摘要】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2024-08-04 12:16
【摘要】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用勾股定理
【摘要】立體幾何證明------垂直1.空間兩條直線的位置關(guān)系有:_________,_________,_________三種。2.(公理4)平行于同一條直線的兩條直線互相_________.3.直線與平面的位置關(guān)系有_____________,_____________,_____________三種。4.直線與平面平行判定定理:如果_________的一條直線和
2025-06-28 00:01
【摘要】第一篇:立體幾何證明大題答案 立體幾何證明大題答案 1.(本題滿分9分) 證明: ü(1)AE=EDüyTEF//DC?AF=FCt??EF?平面BCDyTEF//平面BCD DCì平面BC...
2024-11-12 12:47
【摘要】立體幾何測試卷班級姓名學(xué)號一、選擇題:1.一個圓錐的側(cè)面積是其底面積的2倍,則該圓錐的母線與底面所成的角為()(A)30(B)45(C)60(D)752.兩個完全相同的長方體的長、寬、高分別為5cm、4cm、3cm,把它
2025-04-20 13:17
【摘要】19.如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn).(1)求證:DE⊥BC;(2)求三棱錐E﹣BCD的體積.【考點(diǎn)】直線與平面垂直的性質(zhì);棱柱、棱錐、棱臺的體積.【專題】證明題;數(shù)形結(jié)合;數(shù)形結(jié)合法;立體幾何.【分析】(1)取BC中點(diǎn)F,連結(jié)EF,AF,由直棱柱的結(jié)構(gòu)特征和中位線定理可得四邊形ADEF是平行四
2025-03-29 05:39
【摘要】全國各地高考文科數(shù)學(xué)試題分類匯編:立體幾何1.[·重慶卷20]如圖1-4所示四棱錐P-ABCD中,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M為BC上一點(diǎn),且BM=.(1)證明:BC⊥平面POM;(2)若MP⊥AP,求四棱錐P-ABMO的體積.
2025-03-28 06:43
【摘要】《立體幾何初步》練習(xí)題一、選擇題1、一條直線和三角形的兩邊同時垂直,則這條直線和三角形的第三邊的位置關(guān)系是()A、垂直B、平行C、相交不垂直D、不確定2.在正方體中,與垂直的是()A.B.C.D.3、線和平面,能得出的一個條件是(
2025-06-27 15:16
【摘要】1.(2013年高考遼寧卷(文))如圖,(I)求證:(II)設(shè)(文))如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,.(Ⅰ)證明:A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的體積.3.(2013年高考
2025-04-20 13:06
【摘要】立體幾何練習(xí)題1.四棱錐中,底面為平行四邊形,側(cè)面面,已知,,,.(1)設(shè)平面與平面的交線為,求證:;(2)求證:;(3)求直線與面所成角的正弦值.2.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,,AD=AC=1,O為AC的中點(diǎn),PO平面ABCD,PO=2,M為PD的中點(diǎn)。(1)證明:PB//平面ACM;(2)證明:AD平面PAC
【摘要】立體幾何大題20道1、(17年浙江)如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).(I)證明:CE∥平面PAB;(II)求直線CE與平面PBC所成角的正弦值2、(17新課標(biāo)3)如圖,四面體ABCD中,△ABC是正三角形,AD=CD.(1)證明:AC⊥BD;(2)已知△ACD是直