【摘要】19.如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn).(1)求證:DE⊥BC;(2)求三棱錐E﹣BCD的體積.【考點(diǎn)】直線與平面垂直的性質(zhì);棱柱、棱錐、棱臺的體積.【專題】證明題;數(shù)形結(jié)合;數(shù)形結(jié)合法;立體幾何.【分析】(1)取BC中點(diǎn)F,連結(jié)EF,AF,由直棱柱的結(jié)構(gòu)特征和中位線定理可得四邊形ADEF是平行四
2025-03-29 05:39
【摘要】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用
2025-07-27 12:10
【摘要】《立體幾何初步》練習(xí)題一、選擇題1、一條直線和三角形的兩邊同時(shí)垂直,則這條直線和三角形的第三邊的位置關(guān)系是()A、垂直B、平行C、相交不垂直D、不確定2.在正方體中,與垂直的是()A.B.C.D.3、線和平面,能得出的一個(gè)條件是(
2025-06-27 15:16
【摘要】立體幾何大題專練1、如圖,已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點(diǎn);(1)求證:MN//平面PAD(2)若∠PDA=45°,求證:MN⊥平面PCD2(本小題滿分12分)如圖,在三棱錐中,分別為的中點(diǎn).PACEBF(1)求證:平面;(2)若平面平面,且,,求證:平面平面.(1)證明:連
2025-06-26 03:46
【摘要】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-27 12:16
【摘要】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用勾股定理
2025-03-28 06:44
【摘要】立體幾何大題題型二:翻折問題,,是的中點(diǎn),將△沿著翻折成△,使面面,分別為的中點(diǎn).(1)求三棱錐的體積;(2)證明:平面;(3)證明:平面平面.思路分析:對于翻折問題要注意翻折后的圖形與翻折前的圖形中的變與不變量.(1)求棱錐的體積一般找棱錐高易求的進(jìn)行轉(zhuǎn)換.由題意知,且,∴四邊形為平行四邊形,∴,即為等邊三角形.由面面的性質(zhì)定理,連結(jié),則,可知平面.所以即可;(2)本題
2025-07-27 12:06
【摘要】高一立體幾何證明專題練習(xí)一,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點(diǎn),求證:(1)B,C,H,G四點(diǎn)共面;(2)平面EFA1∥平面BCHG.,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn).(1)求證:DE∥平面ABC;(
【摘要】1.(2013年高考遼寧卷(文))如圖,(I)求證:(II)設(shè)(文))如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,.(Ⅰ)證明:A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的體積.3.(2013年高考
2025-04-20 13:06
【摘要】立體幾何練習(xí)題1.四棱錐中,底面為平行四邊形,側(cè)面面,已知,,,.(1)設(shè)平面與平面的交線為,求證:;(2)求證:;(3)求直線與面所成角的正弦值.2.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,,AD=AC=1,O為AC的中點(diǎn),PO平面ABCD,PO=2,M為PD的中點(diǎn)。(1)證明:PB//平面ACM;(2)證明:AD平面PAC
2025-03-28 06:43
【摘要】立體幾何大題20道1、(17年浙江)如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).(I)證明:CE∥平面PAB;(II)求直線CE與平面PBC所成角的正弦值2、(17新課標(biāo)3)如圖,四面體ABCD中,△ABC是正三角形,AD=CD.(1)證明:AC⊥BD;(2)已知△ACD是直
【摘要】專業(yè)整理分享文科立體幾何大題復(fù)習(xí) 一.解答題(共12小題)1.如圖1,在正方形ABCD中,點(diǎn),E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,點(diǎn)G,R分別在線段DH,HB上,且.將△AED,△CFD,△BEF分別沿DE,DF,EF折起,使點(diǎn)A,B,C重合于點(diǎn)P,如圖2所示.
2025-04-20 01:27
【摘要】高一數(shù)學(xué)立體幾何期末練習(xí)1、已知m,n是兩條不同直線,α,β,γ是三個(gè)不同平面.下列命題中正確的是()A.若α⊥γ,β∥γ,則α∥βB.若m⊥α,n⊥α,則m∥nC.若m∥α,n∥α,則m∥nD.若m∥α,m∥β,則a∥β2、設(shè)直線m與平面α相交但不垂直,則下列說法中正確的是()γA.過直線m有且只有一個(gè)平面與平面α垂
2025-04-07 05:00
【摘要】1AA1B1BCC1PDA1B1BAC1CD1一:選擇題(4分題)10?,能確定一個(gè)平面的條件是()A.空間任意三點(diǎn)2.,,是空間三條不同的直線,則下列命題正確的是().1l23lA.,B.,?23l13/l?12l?3/l?13l?C.,,共面D.,,共點(diǎn),,共面23/ll
【摘要】一.選擇題(本大題共12個(gè)小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中只有一個(gè)是符合題目要求的)1、下列命題為真命題的是()A.平行于同一平面的兩條直線平行;;C.垂直于同一平面的兩條直線平行;。2、下列命題中錯(cuò)誤的是:()A.如果α⊥β,那么α內(nèi)一定存在直線平行于平面β;B.如果α⊥β,那么α內(nèi)所有直線都垂直于平面β;C.
2025-06-27 19:22