【摘要】正弦函數(shù)、余弦函數(shù)的圖象新課講授圖象的幾何作法???2,0sin??xxy,由于在單位圓中,角x的正弦線表示其正弦值,因此可將正弦線移動到直角坐標(biāo)系中確定對應(yīng)的點(x,sinx),從而作出函數(shù)圖象.PM3?1Oxy1如:作正弦線
2025-06-08 23:39
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)(1)y=sinx、y=cosx的圖象一、復(fù)習(xí):2??23?11?.yxO?2....作出y=sinx,y=cosx,x∈[0,2π]的圖象2??23?.yxO?2....-11與x軸的交點(
2025-06-09 00:10
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)(3)正弦函數(shù)的圖象性質(zhì):(1)定義域(2)值域R.[-1,1].當(dāng)且僅當(dāng)時取得最大值1,當(dāng)且僅當(dāng)時取得最小值-1.Zkkx???,??22Zkkx????,??22(3)奇偶性奇函數(shù).(5
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)(2)-----1-1-----1-1-----1-1正弦函數(shù)的圖象性質(zhì):(1)定義域(2)值域R.[-1,1].當(dāng)且僅當(dāng)時取得最大值1,當(dāng)且僅當(dāng)時取得最小值-1.
2025-06-09 00:28
【摘要】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象1.了解正弦函數(shù)、余弦函數(shù)的圖象.(重點、易混點)2.會用“五點法”畫出正、余弦函數(shù)的圖象.(重點)3.能利用正、余弦函數(shù)的圖象解簡單問題.(難點)正弦函數(shù)、余弦函數(shù)的圖象函數(shù)y=sinxy=
2024-11-23 17:33
【摘要】正切函數(shù)的圖象和性質(zhì)一、回顧正弦函數(shù)的圖象的作法(2)利用正弦線畫正弦函數(shù)的圖象(1)利用描點法畫正弦函數(shù)的圖象xy.023??2?2?1-1....oxy---11---1--?21oA步驟:(1)等分3?2?32?65
2025-06-08 23:52
【摘要】函數(shù)y=Asin(ωx+φ)的圖象(1)知識與方法回顧1.“五點法”作函數(shù)y=sinx簡圖的步驟,其中“五點”是指什么?)0,2(),1,23(),0,(),1,2(),0,0(?????2??23?11?.yxO?2....2.函數(shù)圖象的平移變換法則
【摘要】函數(shù)y=Asin(ωx+φ)的圖象(2)()()yfxyfx?????化歸思想:怎樣由()0yfx???將圖象上的每一個點向左()(或向右0||()yfx??????())平移個單位即得到:函數(shù)y=sin(x+φ),x∈R(其
【摘要】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的性質(zhì)(二)1.借助圖象理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點等).(重點)2.能利用性質(zhì)解決一些簡單問題.(重點、難點)正、余弦函數(shù)的圖象與性質(zhì)函數(shù)y=sinxy=cos
【摘要】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)1.了解周期函數(shù)與最小正周期的意義.(難點、易錯點)2.了解三角函數(shù)的周期性和奇偶性.(重點)3.會求函數(shù)的周期和判斷三角函數(shù)的奇偶性.(重點)1.函數(shù)的周期性(1)對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得當(dāng)
2024-11-23 18:02
【摘要】1.平面的表示方法.P.Q2.與平面有關(guān)的三個公理公理1.P.Q公理1的符號語言描述:畫兩個平面相交,當(dāng)一個平面的一部分被另一個平面遮住時,應(yīng)把被遮部分的線段畫成虛線或不畫.公理2公理1的符號語言描述:畫兩個平面相交,當(dāng)一個平面的一部分被另一個平面遮住時,應(yīng)把被遮部分的線段畫成
【摘要】正弦函數(shù)、余弦函數(shù)的圖象重點:“五點法”作正弦函數(shù)、余弦函數(shù)的圖象.難點:正弦線平移轉(zhuǎn)化為正弦函數(shù)圖象上的點;正弦函數(shù)與余弦函數(shù)圖象間的關(guān)系.一、用五點法作圖基本流程為:尋找角度→列表→描點→連線.例1.用“五點法”作出函數(shù)y=cos(x-π3)在一個周期內(nèi)的圖象.【思路點撥】本題利用“五點法”作圖的方法,
2024-11-23 20:39
【摘要】課題正弦函數(shù)、余弦函數(shù)的圖象教學(xué)目標(biāo)知識與技能了解利用單位圓中的正弦線畫正弦曲線的方法過程與方法掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正、余弦曲線.情感態(tài)度價值觀研究函數(shù)的性質(zhì)常常以圖象直觀為基礎(chǔ),通過觀察函數(shù)的圖象,從圖象的特征獲得函數(shù)的性質(zhì)是一個基本方法
2024-11-23 23:26
【摘要】1.正弦函數(shù)、余弦函數(shù)的圖象【學(xué)習(xí)要求】1.了解利用單位圓中的正弦線畫正弦曲線的方法.2.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正、余弦曲線.3.理解正弦曲線與余弦曲線之間的聯(lián)系.【學(xué)法指導(dǎo)】1.研究函數(shù)的性質(zhì)常常以圖象直觀為基礎(chǔ),通過觀察函數(shù)的圖象,從圖象的特征獲得函數(shù)的性質(zhì)
【摘要】正弦函數(shù)、余弦函數(shù)的圖象一、備用習(xí)題“五點法”畫出下列函數(shù)的圖象:(1)y=2-sinx,x∈[0,2π];(2)y=21+sinx,x∈[0,2π].2x=cosx的解的個數(shù)為()12