【摘要】§復習目標1.掌握一元二次函數(shù)圖象的畫法及圖象的特征2.掌握一元二次函數(shù)的性質(zhì),能利用性質(zhì)解決實際問題3.會求二次函數(shù)在指定區(qū)間上的最大(?。┲?.掌握一元二次函數(shù)、一元二次方程的關(guān)系。知識回顧1.函數(shù)叫做一元二次函數(shù)。2.一元二次函數(shù)的圖象是一條拋物線。3.任何一個二次函數(shù)都可把它的解析式配方為頂點式:,性質(zhì)如下:(1)圖象的頂
2025-05-19 04:39
【摘要】一元二次函數(shù)的圖象和性質(zhì)(一)二次函數(shù)基本知識:形如的函數(shù)叫關(guān)于的二次函數(shù)。(1)一般式(三點式):,配方后為。其中頂點坐標為,對稱軸為。(2)頂點式(配方式):,其中頂點坐標為,對稱軸為。(3)兩根式(零點式):,其中是方程的兩個根,同時也是二次函數(shù)的圖像與
2025-05-18 23:39
【摘要】WORD格式整理版§復習目標1.掌握一元二次函數(shù)圖象的畫法及圖象的特征2.掌握一元二次函數(shù)的性質(zhì),能利用性質(zhì)解決實際問題3.會求二次函數(shù)在指定區(qū)間上的最大(?。┲?.掌握一元二次函數(shù)、一元二次方程的關(guān)系。知識回顧1.函數(shù)叫做一元二次函數(shù)。2.一元二次函數(shù)的圖象是一條拋物線。3.任何一個
2024-08-01 18:34
【摘要】一元二次函數(shù)的圖象和性質(zhì)一、【課程要求】1.掌握二次函數(shù)的圖像和性質(zhì),結(jié)合二次函數(shù)的圖像,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系;2.通過三個“二次”掌握函數(shù)、方程、不等式之間的關(guān)系二、【重點難點】①二次函數(shù)的圖象和性質(zhì),②一元二次方程根的存在性及根的個數(shù),函數(shù)最值問題。三、【命題規(guī)律】從近幾年高考的形勢來看,十分注重對三個“二
2025-03-27 05:31
【摘要】二次函數(shù)y=ax2的圖象和性質(zhì)xy一.平面直角坐標系:1.有關(guān)概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內(nèi)點的坐標:3.坐標平面內(nèi)的點與有序?qū)崝?shù)對是:一一對應.坐標平面內(nèi)的任意一點M,都有
2024-11-25 23:05
【摘要】......二次函數(shù)的圖象與基本性質(zhì)(一)、知識點回顧【知識點一:二次函數(shù)的基本性質(zhì)】y=ax2y=ax2+ky=a(x-h(huán))2y=a(x-h(huán))2+ky=ax2+bx+c開口方向頂點
2025-06-26 21:41
【摘要】中考數(shù)學總復習第一輪二次函數(shù)的圖像與性質(zhì)陜西科技大學附屬中學蒙燕妮【課前熱身】的開口向__對稱軸是______.頂點坐標是_________.
2024-11-26 02:30
【摘要】題課題二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)第1課時8教教學目標知識與技能1)掌握二次函數(shù)的圖象和性質(zhì),運用配方法求解二次函數(shù)的對稱軸、頂點、y隨x的變化情況。數(shù)學思考1)通過二次函數(shù)頂點式的圖象和性質(zhì)討論二次函數(shù)y=ax2+bx+c一般形式的圖象性質(zhì)。問題解決1)通過對給定的一般二次函數(shù)形式進行配方得到頂點
2025-04-19 12:39
【摘要】課題二次函數(shù)的圖像和性質(zhì)教學內(nèi)容一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二
2024-08-06 04:32
【摘要】二次函數(shù)的圖象和性質(zhì)1、小李從如圖所示的二次函數(shù)的圖象中,觀察得出了下面四條信息:(1)b2-4ac>0;(2)c>1;(3)ab>0;(4)a-b+c<0.你認為其中錯誤的有()yxO(第4題)A.2個 B.3個 C.4個 D.1個第1題(-1,2)和點N(
2025-03-27 06:26
【摘要】東北師范大學“明日鄉(xiāng)”公益支教團一元二次函數(shù)的圖象一、定義:一般地,如果是常數(shù),,那么叫做的一元二次函數(shù).其中,x是自變量,a,b,c分別是函數(shù)表達式的二次項系數(shù)、一次項系數(shù)和常數(shù)項。二、一元二次函數(shù)y=ax2+bx+c﹙a≠0﹚的圖象(其中a,b,c均為常數(shù))1.當a>0時函數(shù)圖象開口向上;
2025-07-01 22:52
【摘要】的圖象與性質(zhì)h)-a(xy2?y=ax2+ka0a0圖象開口對稱性頂點增減性回顧:二次函數(shù)y=ax2+k的性質(zhì)開口向上開口向下|a|越大,開口越小關(guān)于y軸對稱頂點是最低點頂點是最高點當x0時,y隨x的增大而減小
【摘要】二次函數(shù)與一元二次方程和二次函數(shù)的應用主講於憲單位丹徒區(qū)冷遹中學審稿丹徒區(qū)教研室張文全?學習目標?知識回顧?典型例題和及時反饋學習目標?了解二次函數(shù)的圖像與x軸的交點個數(shù)和
2024-09-05 13:16
【摘要】 一元二次函數(shù)的教案 要讓學生對數(shù)學感興趣,首先教師必須對自己所教學科感興趣,自然就帶動了學生上數(shù)學課的興趣。這就要求教師作一名用心的教師,利用一切可利用的細節(jié)激發(fā)學生興趣。比如寫一份...
2024-11-16 23:37
【摘要】二次函數(shù)的應用回顧:二次函數(shù)y=ax2+bx+c的性質(zhì)y=ax2+bx+c(a≠0)a0a0開口方向頂點坐標對稱軸增減性極值向上向下在對稱軸的左側(cè),y隨著x的增大而減小。在對稱軸的右側(cè),y隨著x的增大而增大。在對稱軸的左側(cè),y隨著x的增
2024-11-26 04:09