【摘要】題課題二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)第1課時8教教學(xué)目標(biāo)知識與技能1)掌握二次函數(shù)的圖象和性質(zhì),運(yùn)用配方法求解二次函數(shù)的對稱軸、頂點(diǎn)、y隨x的變化情況。數(shù)學(xué)思考1)通過二次函數(shù)頂點(diǎn)式的圖象和性質(zhì)討論二次函數(shù)y=ax2+bx+c一般形式的圖象性質(zhì)。問題解決1)通過對給定的一般二次函數(shù)形式進(jìn)行配方得到頂點(diǎn)
2025-04-19 12:39
【摘要】中考數(shù)學(xué)總復(fù)習(xí)第一輪二次函數(shù)的圖像與性質(zhì)陜西科技大學(xué)附屬中學(xué)蒙燕妮【課前熱身】的開口向__對稱軸是______.頂點(diǎn)坐標(biāo)是_________.
2024-11-26 02:30
【摘要】二次函數(shù)y=ax2的圖象和性質(zhì)xy一.平面直角坐標(biāo)系:1.有關(guān)概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內(nèi)點(diǎn)的坐標(biāo):3.坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對是:一一對應(yīng).坐標(biāo)平面內(nèi)的任意一點(diǎn)M,都有
2024-11-25 23:05
【摘要】......二次函數(shù)的圖象與基本性質(zhì)(一)、知識點(diǎn)回顧【知識點(diǎn)一:二次函數(shù)的基本性質(zhì)】y=ax2y=ax2+ky=a(x-h(huán))2y=a(x-h(huán))2+ky=ax2+bx+c開口方向頂點(diǎn)
2025-06-26 21:41
【摘要】......專題講解——二次函數(shù)的圖象知識點(diǎn)回顧:1.二次函數(shù)解析式的幾種形式:①一般式:(a、b、c為常數(shù),a≠0)②頂點(diǎn)式:(a、h、k為常數(shù),a≠0),其中(h,k)為頂點(diǎn)坐標(biāo)。③交點(diǎn)式:,其中是拋
2025-03-27 06:25
【摘要】探究在同一坐標(biāo)系中畫出二次函數(shù)的圖象,并考慮它們的開口方向、對稱軸和頂點(diǎn).x···-3-2-10123······
2024-11-25 01:22
【摘要】二次函數(shù)復(fù)習(xí)注意:當(dāng)二次函數(shù)表示某個實際問題時,還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實數(shù):(1)二次函數(shù)的一般形式:函數(shù)y=ax2+bx+c(a≠0)注意:它的特殊形式:當(dāng)b=0,c
【摘要】二次函數(shù)y=ax2+k圖象復(fù)習(xí)二次函數(shù)y=ax2的圖象是什么形狀呢?什么確定y=ax2的性質(zhì)?通常怎樣畫一個函數(shù)的圖象?我們來畫最簡單的二次函數(shù)y=2x2的圖象。還記得如何用描點(diǎn)法畫一個函數(shù)的圖象嗎?x…-2-1012…
2024-11-25 00:05
【摘要】課題二次函數(shù)的圖像和性質(zhì)教學(xué)內(nèi)容一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二
2024-08-06 04:32
【摘要】二次函數(shù)的圖象和性質(zhì)1、小李從如圖所示的二次函數(shù)的圖象中,觀察得出了下面四條信息:(1)b2-4ac>0;(2)c>1;(3)ab>0;(4)a-b+c<0.你認(rèn)為其中錯誤的有()yxO(第4題)A.2個 B.3個 C.4個 D.1個第1題(-1,2)和點(diǎn)N(
2025-03-27 06:26
【摘要】二次函數(shù)圖象專題訓(xùn)練1.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論①a、b異號;②當(dāng)x=1和x=3時,函數(shù)值相等;③4a+b=0,④當(dāng)y=4時,x的取值只能為0.結(jié)論正確的個數(shù)有()個A.1 ?。拢? C.3 ?。模?yxO2、已知二次函數(shù)()的圖象如圖所示,有下列結(jié)論:①;②;③;④.其中,正
2025-06-26 13:54
【摘要】園正教育考試研究中心數(shù)學(xué)個性化教學(xué)教案授課時間:年月日備課時間年月日年級九學(xué)科數(shù)學(xué)課時2h學(xué)生姓名授課主題=ax2+bx+c的圖像和性質(zhì)授課教師教學(xué)目標(biāo)=ax2+bx+c的頂點(diǎn)坐標(biāo)、對
2025-04-19 13:00
【摘要】二次函數(shù)的圖像與性質(zhì)東廈中學(xué)紀(jì)傳裕☆y=ax2+bx+c(a≠0)的性質(zhì):☆、增減性及對稱性:☆3.二次函數(shù)解析式的求法:一.拋物線y=ax2+bx+c(a≠0)的性質(zhì):a、b、c的代數(shù)式作用說明a1.a的正負(fù)決定拋物線開口方向;2.決定拋物線開口
【摘要】二次函數(shù)的圖像與性質(zhì)一、二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質(zhì):a的絕對值越大,拋物線的開口越小。的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減小;時,有最小值.向下軸時,隨的增大而減小;時,隨的增大而增大;時,有最大值.2.的性質(zhì):上加下減
2025-06-19 00:11
【摘要】的圖象與性質(zhì)h)-a(xy2?y=ax2+ka0a0圖象開口對稱性頂點(diǎn)增減性回顧:二次函數(shù)y=ax2+k的性質(zhì)開口向上開口向下|a|越大,開口越小關(guān)于y軸對稱頂點(diǎn)是最低點(diǎn)頂點(diǎn)是最高點(diǎn)當(dāng)x0時,y隨x的增大而減小