【摘要】§利用導數(shù)研究函數(shù)2022/11/17一、單調(diào)性則可導在,),(],,[babaCf?).,(),0(0)()(],[baxxfbaf?????減上遞增在證明:)(必要性?,?f?,0)()(:???hxfhxf總有).,(,0)(baxxf????,),(),,(hbahxba
2025-05-09 12:03
【摘要】利用導數(shù)研究函數(shù)的極值赤峰二中:朱明英數(shù)學選修2-2新課標人教版B《利用導數(shù)研究函數(shù)的極值》是新課標人教B版教材選修2-2第一章第三節(jié)的第二小節(jié)。第三章的內(nèi)容主要分為兩個部分:一是導數(shù)的概念、運算及其應(yīng)用;二是定積分的概念和微積分基本定理。本節(jié)屬于導數(shù)的應(yīng)用部分,是本章的
2024-07-29 10:48
【摘要】了解函數(shù)單調(diào)性和導數(shù)的關(guān)系/能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間/了解函數(shù)在某點取得極值的必要條件和充分條件/會用導數(shù)求函數(shù)的極大值、極小值/會求閉區(qū)間上函數(shù)的最大值、最小值/會利用導數(shù)解決某些實際問題導數(shù)的應(yīng)用1.函數(shù)在某區(qū)間上單調(diào)的充分條件一般地,設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)有導數(shù),如果在這個區(qū)間內(nèi)y′
2024-10-03 15:55
【摘要】,能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(對多項式函數(shù)求導一般不超過三次).;會用導數(shù)求函數(shù)的極大值、極小值(對多項式函數(shù)求導一般不超過三次);會求閉區(qū)間上函數(shù)的最大值、最小值(對多項式函數(shù)求導一般不超過三次)..在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與其導數(shù)的正負有
2024-09-05 15:21
【摘要】基本初等函數(shù)的導數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(x)=0若f(x)=x,則f(x)=nx
2024-11-06 19:25
【摘要】一、復(fù)習與引入:1.函數(shù)的導數(shù)的定義與幾何意義...y=(3x-2)2的導數(shù),那么我們可以把平方式展開,利用導數(shù)的四則運算法則求導.然后能否用其它的辦法求導呢?又如我們知道函數(shù)y=1/x2的導數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導數(shù)又是什么呢?y?為了解決上面的問題
2025-05-01 23:00
【摘要】§多元函數(shù)的偏導數(shù)與全微分(一)主要內(nèi)容?偏導數(shù)的概念及計算方法?高階導數(shù)定義8.3設(shè)函數(shù)),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,當y固定在0y而x在0x處有增量x?時,相應(yīng)地函數(shù)有增量),(
2025-05-01 23:20
【摘要】§高階導數(shù)、高階偏導數(shù)一、高階導數(shù)二、高階偏導數(shù)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導
2025-05-10 12:10
【摘要】l對一元函數(shù):導數(shù)描述了函數(shù)在處的瞬時變化率,它的幾何意義就是函數(shù)曲線上點處的切線的斜率。l對于多元函數(shù),我們同樣感興趣它在某處的瞬時變化率問題,以二元函數(shù)為例,我們分別討論:相對于以及相對于的瞬時變化率——偏導數(shù)偏導數(shù)的定義偏導數(shù)的定義設(shè)函數(shù)在點的某一鄰域
【摘要】第六節(jié)高階導數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導數(shù)?(2)若有高階導數(shù),其定義和求法是否與實變函數(shù)相同?回答:(1)解析函數(shù)有各高階導數(shù).(2)高階導數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示,這與實變函
2025-01-23 03:38
【摘要】常見函數(shù)的導數(shù)復(fù)習引入幾何意義:曲線在某點處的切線的斜率;(瞬時速度或瞬時加速度)導數(shù)的物理意義:物體在某一時刻的瞬時度。PQoxyy=f(x)割線切線T2、如何求切線的斜率?)Pk0(處切線的斜率無限趨近于點時,當PQx??xxfxxfkPQ?
2024-11-27 22:57
【摘要】利用導數(shù)研究函數(shù)的性態(tài)目錄標題 1中文摘要 11.函數(shù)的單調(diào)性 1 1 2 22.函數(shù)的極值 3 3 4 43.函數(shù)的最大值、最小值問題 5、最小值求法 6 64.函數(shù)的凸凹性 7 7 8 8 95.曲線的漸近線 9 9 9 9
2025-01-19 10:41
【摘要】利用導數(shù)研究函數(shù)的性態(tài)目錄標題.............................................................1中文摘要.........................................................11.函數(shù)的單調(diào)性..........................
2025-02-28 08:12
【摘要】第二章一元微分學第六節(jié)利用導數(shù)討論函數(shù)性質(zhì)本節(jié)內(nèi)容包括:利用導數(shù)討論函數(shù)的單調(diào)性、求函數(shù)極值和極值點、最值和最值點及其應(yīng)用,利用導數(shù)討論函數(shù)圖形的凹凸性、求曲線的拐點,求曲線切線、法線、漸近線及函數(shù)作圖等。這部分內(nèi)容很重要,事實上前面幾節(jié)的知識都用到了本節(jié)的內(nèi)容。在高等數(shù)學的各種考試中本節(jié)的知識都是重要部分,同學們一定要很熟練。但由于這部分內(nèi)容一般不要求很高的技巧(要求熟練、準
2025-06-23 06:14
【摘要】簡單復(fù)合函數(shù)的導數(shù)為常數(shù))????(x)x)(2(1'??'(3)()ln(0,1)xxaaaaa???且'1(4)(log)(0,1)lnaxaaxa???且'(8)(cos)sinxx??'
2024-11-21 18:31