【摘要】高考數(shù)學“放縮法”全解析例如:1、添加或舍棄一些正項(或負項) 例1、已知求證:證明: 若多項式中加上一些正的值,多項式的值變大,多項式中加上一些負的值,多項式的值變小。由于證明不等式的需要,有時需要舍去或添加一些項,使不等式一邊放大或縮小,利用不等式的傳遞性,達到證明的目的。本題在放縮時就舍去了,從而是使和式得到化簡.2、先放縮再求和(或先求和再
2025-04-20 13:10
【摘要】 高考數(shù)學備考之放縮技巧 證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數(shù)列通項的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進行恰當?shù)胤趴s;其放縮技巧主要有以下幾種: 一、裂項放縮
2025-06-02 22:40
【摘要】2011高考數(shù)學備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數(shù)列通項的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進行恰當?shù)胤趴s;其放縮技巧主要有以下幾種:一、裂項放縮例1.(
2024-08-22 13:27
【摘要】2020高考數(shù)學備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數(shù)列通項的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進行恰當?shù)胤趴s;其放縮技巧主要有以下幾種:
2024-11-12 16:49
【摘要】1高考數(shù)學備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數(shù)列通項的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進行恰當?shù)胤趴s;其放縮技巧主要有以下幾種:一、裂項放縮
2024-11-12 14:02
【摘要】第一篇:高三數(shù)學數(shù)列放縮法 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年高考命題的熱點,這類問題能有效地考查學生綜合運用數(shù)列與不等式知識解決問題的能力.本文介紹一類與數(shù)列和有關(guān)的不等式問題...
2024-11-03 22:11
【摘要】20xx高考數(shù)學所有放縮技巧及不等式證明方法(構(gòu)造法)總的來說,高考中與不等式有關(guān)的大題(主要是證明題)一般常用均值不等式、構(gòu)造函數(shù)后用導數(shù)工具解、裂項相消等常見放縮法來解決。證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素
2024-08-10 09:18
2025-06-19 12:41
【摘要】數(shù)列綜合應(yīng)用(1)————用放縮法證明與數(shù)列和有關(guān)的不等式一、備考要點數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年高考命題的熱點,這類問題能有效地考查學生綜合運用數(shù)列與不等式知識解決問題的能力.解決這類問題常常用到放縮法,而求解途徑一般有兩條:一是先求和再放縮,二是先放縮再求和.二、典例講解1.先求和后放縮例1.正數(shù)數(shù)列的前項的和,滿足,試求
2025-06-21 04:06
【摘要】1.均值不等式法例1設(shè)求證例2已知函數(shù),若,且在[0,1]上的最小值為,求證:例3求證.例4已知,,求證:≤1.2.利用有用結(jié)論例5求證例6已知函數(shù)求證:對任意且恒成立。例7已知用數(shù)學歸納法證明;對對都成立,證明(無理數(shù))例8已知不等式。表示不超過的最大整數(shù)。設(shè)正數(shù)數(shù)列滿足:求證再如:設(shè)函數(shù)。(Ⅰ)
2024-08-22 11:16
【摘要】安徽高中數(shù)學第1頁共12頁2022年普通高等學校招生全國統(tǒng)一考試(全國Ⅱ卷)文科數(shù)學(貴州、黑龍江、吉林、云南、甘肅、新疆、內(nèi)蒙古、青海、西藏)第Ⅰ卷(選擇題)本卷共12小題,每小題5分,共60分。在每小題給出的四個選項中,只
2025-01-14 01:05
【摘要】第一篇:2012高考專題----數(shù)列與不等式放縮法 高考專題——放縮法 一、基本方法 1.“添舍”放縮 通過對不等式的一邊進行添項或減項以達到解題目的,這是常規(guī)思路。,b為不相等的兩正數(shù),且a...
2024-10-28 23:29
【摘要】高考數(shù)學備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數(shù)列通項的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進行恰當?shù)胤趴s;其放縮技巧主要有以下幾種:奇巧積累:(1)(2)(3)
2025-01-17 14:08
【摘要】絕密★啟用前2022年普通高等學校招生全國統(tǒng)一考試文科數(shù)學高考資源網(wǎng)制作本卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,第Ⅰ卷第1頁至第2頁,第Ⅱ卷第3頁至第4頁??荚嚱Y(jié)束后,將本試卷和答題Ⅰ、Ⅱ交回,全卷滿分150分,考試時間120分鐘。第Ⅰ卷(選擇題共50分)選擇題:本大題共
2025-01-10 19:40
【摘要】不等式的證明(放縮法)1.設(shè),,則的大小關(guān)系是()A.B.C.D.2.已知三角形的三邊長分別為,設(shè),則與的大小關(guān)系是()A.B.C.D.3.設(shè)不等的兩個正數(shù)滿足,則的取值范
2024-08-04 12:58