【摘要】高考數學備考之放縮技巧證明數列型不等式,因其思維跨度大、構造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數列通項的結構,深入剖析其特征,抓住其規(guī)律進行恰當地放縮;其放縮技巧主要有以下幾種:奇巧積累:(1)(2)(3)
2025-01-17 14:08
【摘要】第六章不等式第二節(jié)不等式放縮技巧十法證明不等式,其基本方法參閱(下冊):不等式的放縮技巧。證明數列型不等式,因其思維跨度大、構造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給
2025-06-27 19:24
【摘要】第一篇:數學所有不等式放縮技巧及證明方法 高考數學所有不等式放縮技巧及證明方法 一、裂項放縮 例1.(1)求 例2.(1)求證:1+(2)求證: /7?4kk=1n22-1的值;(2)求證:...
2024-10-28 03:50
【摘要】20xx高考數學所有放縮技巧及不等式證明方法(構造法)總的來說,高考中與不等式有關的大題(主要是證明題)一般常用均值不等式、構造函數后用導數工具解、裂項相消等常見放縮法來解決。證明數列型不等式,因其思維跨度大、構造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素
2024-08-10 09:18
【摘要】不等式的證明(放縮法)1.設,,則的大小關系是()A.B.C.D.2.已知三角形的三邊長分別為,設,則與的大小關系是()A.B.C.D.3.設不等的兩個正數滿足,則的取值范
2024-08-04 12:58
【摘要】數列型不等式的放縮技巧九法證明數列型不等式,因其思維跨度大、構造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數列通項的結構,深入剖析其特征,抓住其規(guī)律進行恰當地放縮;其放縮技巧主要有以下九種:一利用重要不等
2025-06-28 02:18
【摘要】2010數學不等式放縮大全滑縣六中高三數學備課組20摘錄:法一:約分法三:數學歸納法略。09陜西22:已知數列滿足,.略(Ⅱ)證明:(1)略(2)當n=1時,,結論成立當時,易知分母縮小迭代2.09廣東21摘錄:(2)證明:評注:,另還可以用數學歸納法。令,則,令,得,給定區(qū)間,則有,則函數在上單調遞減,∴,即
2024-08-31 22:59
【摘要】第一篇:不等式證明之放縮法 不等式證明之放縮法 放縮法的定義 所謂放縮法,即要證明不等式A (1)放縮的方向要一致。 (2)放與縮要適度。 (3)很多時候只對數列的一部分進行放縮法,保留一...
2024-10-28 23:26
【摘要】放縮法證明不等式一、放縮法原理 為了證明不等式,我們可以找一個或多個中間變量C作比較,即若能判定同時成立,那么顯然正確。所謂“放”即把A放大到C,再把C放大到B;反之,由B縮小經過C而變到A,則稱為“縮”,統(tǒng)稱為放縮法。放縮是一種技巧性較強的不等變形,必須時刻注意放縮的跨度,做到“放不能過頭,縮不能不及”。二、常見的放縮法技巧?。?、基本不等式、柯西不等式、排序不等式放縮2、糖
2025-03-28 02:44
【摘要】1.均值不等式法例1設求證例2已知函數,若,且在[0,1]上的最小值為,求證:例3求證.例4已知,,求證:≤1.2.利用有用結論例5求證例6已知函數求證:對任意且恒成立。例7已知用數學歸納法證明;對對都成立,證明(無理數)例8已知不等式。表示不超過的最大整數。設正數數列滿足:求證再如:設函數。(Ⅰ)
2024-08-22 11:16
【摘要】第一篇:利用放縮法證明數列不等式的技巧“揭秘” 龍源期刊網://. 利用放縮法證明數列不等式的技巧“揭秘”作者:顧冬生 來源:《新高考·高三數學》2013年第06期 數列型不等式的證明題,常常...
2024-10-28 22:50
【摘要】第一篇:用放縮法證明不等式 用放縮法證明不等式 蔣文利飛翔的青蛙 所謂放縮法就是利用不等式的傳遞性,對照證題目標進行合情合理的放大和縮小的過程,在使用放縮法證題時要注意放和縮的“度”,否則就不能...
2024-10-28 05:02
【摘要】第一篇:放縮法證明數列不等式 放縮法證明不等式 1、設數列{an}的前n項的和Sn= 43an- 13′ 2n n+ 1+ 3(n=1,2,3,L) n (Ⅰ)求首項a1與通項an...
2024-10-28 04:58
【摘要】1.幾個重要的放縮不等式2.不等式的幾個常見結論練習:
2025-06-29 05:37
【摘要】......基本不等式習專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”)(4)當且僅當
2025-05-16 23:45