【摘要】....線性代數(shù)復習總結(jié)大全第一章行列式二三階行列式N階行列式:行列式中所有不同行、不同列的n個元素的乘積的和(奇偶)排列、逆序數(shù)、對換行列式的性質(zhì):①行列式行列互
2025-04-20 08:31
【摘要】線性代數(shù)復習.課程重點:解線性方程組★(1)行列式(2)矩陣(3)矩陣初等變換與矩陣的秩(4)向量(5)方陣的相似對角化(6)二次型nn???解個方程個未知量的線性方程組mn???解個方程個未知量的線性方程組解線性方程組判斷線性方程
2025-02-22 06:24
【摘要】線性代數(shù)復習提綱:一:關(guān)于計算方面的內(nèi)容。1.用矩陣消元法求解線性方程組AX=b(分b=0與b≠0兩種情況)的全部解。例題見P97—例3和P93—例如。2.將向量β表示成向量組·····的線性組合。例題見P64—例6
2024-10-06 16:40
【摘要】第一篇:線性代數(shù)復習要點 “線性代數(shù)”主要題型(以第三版的編號為準) (注意:本復習要點所涉及的題目與考試無關(guān)) 一、具體內(nèi)容 第一章、行列式: 、四階或者五階行列式的計算。 3、例4,第...
2024-10-17 18:50
【摘要】《線性代數(shù)》復習提綱第一部分:基本要求(計算方面)四階行列式的計算;N階特殊行列式的計算(如有行和、列和相等);矩陣的運算(包括加、減、數(shù)乘、乘法、轉(zhuǎn)置、逆等的混合運算);求矩陣的秩、逆(兩種方法);解矩陣方程;含參數(shù)的線性方程組解的情況的討論;齊次、非齊次線性方程組的求解(包括唯一、無窮多解);討論一個向量能否用和向量組線性表示;討論或證明向量組的相關(guān)性
2025-01-12 10:35
【摘要】《線性代數(shù)》期末復習提綱第一部分:基本要求(計算方面)四階行列式的計算;N階特殊行列式的計算(如有行和、列和相等);矩陣的運算(包括加、減、數(shù)乘、乘法、轉(zhuǎn)置、逆等的混合運算);求矩陣的秩、逆(兩種方法);解矩陣方程;含參數(shù)的線性方程組解的情況的討論;齊次、非齊次線性方程組的求解(包括唯一、無窮多解);討論一個向量能否用
2025-01-12 10:36
【摘要】第一篇:線性代數(shù)總結(jié) 線性代數(shù)總結(jié)[轉(zhuǎn)貼2008-05-0413:04:49] 字號:大中小 線性代數(shù)總結(jié) 一、課程特點 特點一:知識點比較細碎。 如矩陣部分涉及到了各種類型的性質(zhì)和關(guān)系,...
2024-10-29 06:20
【摘要】第一部分行列式重點:1.排列的逆序數(shù)(;、4題)2.行列式按行(列)展開法則(;)3.行列式的性質(zhì)及行列式的計算()【主要內(nèi)容】1、行列式的定義、性質(zhì)、展開定理、及其應用——克萊姆法則2、排列與逆序3、方陣的行列式4、幾個重要公式:(1);(2);(3);(4);(5);(6);(7);(8)(其中
2024-08-16 03:43
【摘要】第一章行列式1.為何要學習《線性代數(shù)》?學習《線性代數(shù)》的重要性和意義。答:《線性代數(shù)》是理、工、醫(yī)各專業(yè)的基礎課程,它是初等代數(shù)理論的繼續(xù)和發(fā)展,它的理論和方法在各個學科中得到了廣泛的應用。2.《線性代數(shù)》的前導課程。答:初等代數(shù)。3.《線性代數(shù)》的后繼課程。答:高等代數(shù),線性規(guī)劃,運籌學,經(jīng)濟學等。4.如何學習《線性代數(shù)》?答:掌握各章節(jié)的基
2025-03-26 12:03
【摘要】一、填空題(每小題2分,共20分),則。,則。=。,則。、B均為5階矩陣,,則。,設,則。,為的伴隨矩陣,若是矩陣的一個特征值,則的一個特征值可表示為。,則的范圍是。,則與的夾角
2025-06-10 21:27
【摘要】1《線性代數(shù)》復習題一、選擇題:1、P是對稱矩陣又是三角矩陣,則P是().A.對角矩陣B.數(shù)量矩陣C.單位矩陣D.零矩陣2、若向量組321,,???線性無關(guān),則().A.21,??線性無關(guān),B.21,??線性相關(guān)C.4321,,,????
2025-01-11 20:07
【摘要】網(wǎng)友songhonger原創(chuàng),原創(chuàng)帖子地址√初等矩陣的性質(zhì):√設,對階矩陣規(guī)定:為的一個多項式.√√√的特征向量不一定是的特征向量.√與有相同的特征值,但特征向量不一定相同.與相似(為可逆矩陣)記為:與正交相似(為正交矩陣)可以相似對角化
【摘要】第一篇:線性代數(shù)概念總結(jié) 每一個m×n矩陣總可經(jīng)過有限次初等行變換化成行階梯陣與行簡化階梯陣,且行階梯陣中的非零行數(shù)是唯一確定的,行簡化階梯陣也是唯一確定的。 初等矩陣都是可逆的。且初等矩陣的逆矩...
2024-11-05 02:09
【摘要】.行列式的定義和性質(zhì)1.余子式和代數(shù)余子式的定義例1行列式第二行第一列元素的代數(shù)余子式( ?。〢. B.C. D.測試點余子式和代數(shù)余子式的概念解析,答案B2.行列式按一行或一列展開的公式1)2)例2設某階行列式的第二行元素分別為對應的余子式分別為則此行列式的值為.測試點行列式按
2025-03-26 12:11
【摘要】1/35第一章行列式1.逆序數(shù)定義n個互不相等的正整數(shù)任意一種排列為:i1i2215。215。215。in,規(guī)定由小到大為標準次序,當某兩個元素的先后次序與標準次序不同時,就說有一個逆序數(shù),該排列全部逆序數(shù)的總合用t數(shù)字的個數(shù)之和。性質(zhì)一個排列中任意兩個元素對換,排列改變奇偶性,即t2證明如下:設排列為a1Lalab1Lbmbc1L,作m次相鄰對換