【摘要】新課標人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-實際應(yīng)用》審校:王偉?掌握建立不等式模型解決實際問題.?教學(xué)重點:?掌握建立不等式模型解決實際問題教學(xué)目標例1.一般情況下,建筑民用住宅時。民用住宅窗戶的總面積應(yīng)小于該住宅的占地面積,而窗戶的總面積與占地面積的比值越大
2025-01-18 12:36
【摘要】基本不等式請嘗試用四個全等的直角三角形拼成一個“風車”圖案?趙爽弦圖a2+b2≥2ab?該結(jié)論成立的條件是什么?若a,b∈R,那么?形的角度?數(shù)的角度a2+b2-2ab=(a-b)2≥0a0,b0
2024-11-21 05:40
【摘要】第2課時基本不等式的應(yīng)用1.復(fù)習鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關(guān)的實際應(yīng)用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-22 08:10
【摘要】基本不等式:第1課時基本不等式1.理解并掌握基本不等式及其推導(dǎo)過程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當a,b是任意實數(shù)時,有a2+b2≥2ab,當且僅當a=b時,等號成立.(1)公式中a,b的取值是
2024-11-21 19:03
【摘要】新課標人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》教學(xué)目標?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應(yīng)用。?教學(xué)重點:?推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定
2024-08-16 04:41
【摘要】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當且僅當???
2024-12-12 20:20
【摘要】:2baab??復(fù)習引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-23 18:02
【摘要】:2baab??引入新課提問1:我們把“風車”造型抽象成下圖.在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風車”造型抽象成下圖.在
2024-11-23 18:20
【摘要】基本不等式學(xué)習目標?學(xué)習目標:理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學(xué)法指導(dǎo):發(fā)現(xiàn)、討論法;數(shù)形結(jié)合?!钡挠^念。掌握一元二次不等式的解法及步驟。?學(xué)習重點、難點:一元二次不等式、二次函數(shù)、一元二次方程的關(guān)系;一元二次不等式的解法及
2024-11-27 11:40
【摘要】淄川般陽中學(xué)洪貴云基本不等式:(說課)2baab??教材分析教法分析教學(xué)目標教學(xué)過程設(shè)計說明一.教材分析(一)教材的地位和作用(二)課時安排一.教材分析(一)教材的地位和作用基本不等式
2024-08-15 23:52
【摘要】基本不等式以培養(yǎng)學(xué)生探究精神為出發(fā)點,著眼于知識的生成和發(fā)展,著眼于學(xué)生的學(xué)習體驗,設(shè)置問題,由淺入深、循序漸進,給不同層次的學(xué)生提供思考、創(chuàng)造和成功的機會。特進行如下教學(xué)設(shè)計:(一)設(shè)問激疑,創(chuàng)設(shè)情景展示北京召開的第24屆國際數(shù)學(xué)家大會的會標,讓學(xué)生思考,圖案由哪些幾何圖形拼湊而成,由此你能否找到一些相等或不等關(guān)系?接著通過三個問題
【摘要】—求函數(shù)的最值1、如果a,b是正數(shù),那么(當且僅當a=b時取“=”號)(均值不等式)abba??2一、基本不等式回顧ab2)2(ba??2abab??2、公式變形:特別地,a=b=0時也成立(當a、b∈R成立嗎?)
2024-11-06 19:19
【摘要】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標準實驗教科書數(shù)學(xué)》人教A版必修5第三章《不等式》中《基本不等式》的第一課時,主要內(nèi)容是探索基本不等式的生成和證明過程及其簡單的應(yīng)用.本節(jié)內(nèi)容具有變通性、應(yīng)用性的特點,它與線性規(guī)劃呈并列結(jié)構(gòu),可用來求某些函數(shù)的值域和最值,也可解決實際生活中的最優(yōu)化配置問題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-12 07:03
【摘要】第7課時基本不等式的實際應(yīng)用,并會用基本不等式來解題..今天我們來探究基本不等式在實際生活中的應(yīng)用,我們先來看個實際例子:如圖,有一張單欄的豎向張貼的海報,它的印刷面積為72dm2(圖中陰影部分),上下空白各2dm,左右空白各1dm,則四周空白部分面積的最小值是dm2.問題1
2024-11-22 08:09
【摘要】§基本不等式2:2abab??(教學(xué)教案設(shè)計)①各項皆為正數(shù);②和或積為定值;③注意等號成立的條件.利用基本不等式求最值時,要注意條件已知x,y都是正數(shù),P,S是常數(shù).(1)xy=P?x+y≥2P(當且僅當x=y時,取“=”號).(2)x+
2024-08-16 03:53