freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

等腰三角形的性質(zhì)練習(xí)(含答案)-資料下載頁

2024-11-15 06:03本頁面
  

【正文】 況討論,得到兩個答案。然后跟學(xué)生畫出圖形進(jìn)行分析,分兩種情況討論,但是答案是“三個”。強(qiáng)調(diào)需要自己畫圖解題時,一定要三思而后行!例四:在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),∠B=40176。,求∠BAD的度數(shù)?此題的目的在于等腰三角形“等邊對等角”和“三線合一”性質(zhì)的綜合運(yùn)用,以及怎么書寫解答題,強(qiáng)調(diào)“三線合一”的表達(dá)過程。解:在△ABC中,∵AB=AC,∠B=40176。,∴∠B=∠C=40176。又∵∠A+∠B+∠C=180176。,∴∠A=100176。在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),∴AD是底邊上的`中線根據(jù)等腰三角形“三線合一”知:AD是∠BAC的平分線,即∠BAD=∠CAD=50176。四、練習(xí)部分:練功房Ⅰ(基礎(chǔ)知識)填空題在△ABC中,若AB=AC,若頂角為80176。,則底角的外角為_________.在△ABC中,若AB=AC,∠B=∠A,則∠C=____________.在△ABC中,若AB=AC,∠B的余角為25176。,則∠A=____________.已知:如圖,在△ABC中,D是AB邊上的一點(diǎn),AD=DC,∠B=35176。,∠ACD=43176。,則∠BCD=____________開展小組競賽,比一比那個小組算的又快又準(zhǔn)!練功房Ⅱ(實(shí)踐運(yùn)用)實(shí)踐題如圖,是西安半坡博物館屋頂?shù)慕孛鎴D,已經(jīng)知道它的兩邊AB和AC是相等的建筑工人師傅對這個建筑物做出了兩個判斷:①工人師傅在測量了∠B為37176。以后,并沒有測量∠C,就說∠C的度數(shù)也是37176。②工人師傅要加固屋頂,他們通過測量找到了橫梁BC的中點(diǎn)D,然后在AD兩點(diǎn)之間釘上一根木樁,他們認(rèn)為木樁是垂直橫梁的。請同學(xué)們想想,工人師傅的說法對嗎?請說明理由。練功房Ⅲ(思維發(fā)散)選做題已知:如圖,在△ABC中,AB=AC,E在AC上,D在BA的延長線上,AD=AE,連結(jié)DE。請問:DE⊥BC成立嗎?五.小結(jié)部分提問:今天我們學(xué)習(xí)了什么?你覺得在等腰三角形的學(xué)習(xí)中要注意哪些問題?等腰三角形是軸對稱圖形,等腰三角形的定義,以及相關(guān)概念。等腰三角形的兩底角相等。(簡寫成“等邊對等角”)等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡稱“三線合一”)注意等腰三角形關(guān)于底和腰的計(jì)算題,特別是需要的討論的時候,最后還要進(jìn)行檢驗(yàn),看看這樣的三條邊是否可以構(gòu)成三角形。注意等腰三角形的頂角和底角的取值范圍:0176。<頂角<180176。,0176。<底角<90176。重視需要自己畫圖解題時一定要“三思而后行”!六.作業(yè)部分,2,3,4題請問:在等腰三角形中,等腰三角形兩腰上的中線(高線)是否相等?為什么?等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角形呢?帶著問題預(yù)習(xí)教科書P83—84。七、板書設(shè)計(jì)八、教學(xué)說明本節(jié)課的設(shè)計(jì)力求體現(xiàn)使學(xué)生“學(xué)會學(xué)習(xí),為終身學(xué)習(xí)做準(zhǔn)備”的理念,努力實(shí)現(xiàn)學(xué)生的主體地位,使數(shù)學(xué)教學(xué)成為一種過程教學(xué),讓學(xué)生在活動中獲得知識、形成技能和能力;在教學(xué)中注意教師角色的轉(zhuǎn)變,教師是組織者、參與者、合作者,教師的責(zé)任是為學(xué)生創(chuàng)造一種寬松、和諧、適合發(fā)展的學(xué)習(xí)環(huán)境,創(chuàng)設(shè)一種有利于思考、討論、探索的學(xué)習(xí)氛圍。在教法上采用啟發(fā)探索式教學(xué)模式,整堂課以問題為思維主線,引導(dǎo)學(xué)生通過觀察,自主探索,使學(xué)生觀察、主動思考,充分體驗(yàn)探索的快樂和成功的樂趣,并充分利用計(jì)算機(jī)輔助教學(xué),以加強(qiáng)感性認(rèn)識并培養(yǎng)學(xué)生用運(yùn)動聯(lián)系的觀點(diǎn)觀察現(xiàn)象、解決問題。整個教學(xué)環(huán)節(jié)層層推進(jìn)、步步深入,融基礎(chǔ)性、靈活性、實(shí)踐性、開放性于一體,注重調(diào)動學(xué)生思維的積極性,把知識的形成過程轉(zhuǎn)化為學(xué)生親自觀察、實(shí)驗(yàn)、發(fā)現(xiàn)、探索、運(yùn)用的過程。使學(xué)生在獲得知識的同時提高興趣、增強(qiáng)信心、提高能力。本課就教學(xué)過程作以下幾點(diǎn)說明:知識結(jié)構(gòu)安排:本課以“問題情境獲取新知應(yīng)用與拓展”的模式展開,符合初一學(xué)生的認(rèn)知規(guī)律。教學(xué)反饋與評價:本課從學(xué)生回答問題,練習(xí)情況等方面反饋學(xué)生對知識的理解、運(yùn)用,教師根據(jù)反饋信息適時點(diǎn)撥;同時從新課標(biāo)評價理念出發(fā),抓住學(xué)生語言、思想、動手能力方面的亮點(diǎn)給予表揚(yáng),不足的方面給予幫助、指導(dǎo)和恰如其分的鼓勵,形成發(fā)展性評價,提高學(xué)生學(xué)數(shù)學(xué),用數(shù)學(xué)的信心。對于本節(jié)的幾點(diǎn)思考①本節(jié)的學(xué)習(xí)任務(wù)比較重要,有等腰三角形性質(zhì)的推導(dǎo)、性質(zhì)的應(yīng)用,所以本人針對學(xué)生的特點(diǎn),在課例的掌握好的情況下,讓學(xué)生自己去發(fā)現(xiàn)、去聯(lián)想,能充分地發(fā)揮學(xué)生主觀能動性。②通過學(xué)生自己動手實(shí)驗(yàn)得到等腰三角形性質(zhì)的內(nèi)容,可以使他們比較好的掌握知識、提高學(xué)習(xí)數(shù)學(xué)的興趣,達(dá)到了事半功倍之效。③在整個教學(xué)過程中,本人利用多種教學(xué)方法,使學(xué)生在實(shí)驗(yàn)中提出問題,解決問題的途徑,而不知不覺地進(jìn)入學(xué)習(xí)氛圍,把學(xué)生從被動學(xué)習(xí)步入主動想學(xué)的習(xí)慣??傊诒竟?jié)教學(xué)中,我始終堅(jiān)持以學(xué)生為主體,教師為主導(dǎo),師生互動,生生互動,致力啟用學(xué)生已掌握的知識,充分調(diào)動學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動中,在整個教學(xué)過程中我以啟發(fā)學(xué)生,挖掘?qū)W生潛力,讓他們展開聯(lián)想的思維,培養(yǎng)其能力為主旨而發(fā)展。等腰三角形的性質(zhì)說課稿9一、說教材本節(jié)課是在學(xué)生掌握了一般三角形基礎(chǔ)知識和初步推論證明的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,擔(dān)負(fù)著訓(xùn)練學(xué)生學(xué)會分析證明思路的任務(wù),在培養(yǎng)學(xué)生邏輯推理能力方面有著非常重要的作用。等腰三角形兩底角相等的性質(zhì)是今后論證兩角相等的的依據(jù)之一,等腰三角形底邊上的三條主要線段重合的性質(zhì)是今后論證兩條線段相等、兩個角相等及兩條直線垂直的重要依據(jù),因此在教材中處于非常重要的地位。二、說教學(xué)目標(biāo)知識與能力:探索并掌握等腰三角形性質(zhì)定理,能運(yùn)用它們進(jìn)行有關(guān)的論證和計(jì)算。理解等腰三角形和等邊三角形性質(zhì)定理之間的聯(lián)系。過程與方法:培養(yǎng)學(xué)生對命題的抽象概括能力,逐步滲透幾何證題的基本思想方法:分析法和綜合法。情感與態(tài)度:引導(dǎo)學(xué)生進(jìn)行規(guī)律的再發(fā)現(xiàn),培養(yǎng)學(xué)生勇于實(shí)踐、大膽探索的精神。加強(qiáng)學(xué)生數(shù)學(xué)應(yīng)用意識。三、教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):等腰三角形的性質(zhì)定理。難點(diǎn):等腰三角形三線合一性質(zhì)的運(yùn)用四、說教法與學(xué)法課堂教學(xué)要體現(xiàn)以學(xué)生發(fā)展為本的精神,因此本堂課我采取了“開放型的探究式”教學(xué)模式,從問題提出到問題解決都竭力把參與認(rèn)知過程的主動權(quán)交給學(xué)生,使學(xué)生全面參與、全員參與、全程參與,真正確立其主體地位。而教師只是作為數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者,及時地給以引導(dǎo)、點(diǎn)撥、糾正。五、說教學(xué)過程:學(xué)生的學(xué)習(xí)過程是在其原有認(rèn)知基礎(chǔ)上的主動建構(gòu),因此我依據(jù)學(xué)生的認(rèn)知規(guī)律將教學(xué)過程分為以下五個環(huán)節(jié):教學(xué)過程教學(xué)活動設(shè)計(jì)意圖一、回顧與思考電腦展示人字型屋頂?shù)膱D像,提問:屋頂設(shè)計(jì)成了何種幾何圖形?我們都知道它是一種特殊的三角形,那么它特殊在哪里呢?(兩腰相等,是軸對稱圖形)它的對稱軸是哪一條呢?由日常生活中的等腰三角形引出課題,目的在于培養(yǎng)學(xué)生從實(shí)際問題中抽象出數(shù)學(xué)問題的能力。同時創(chuàng)造豐富的舊知環(huán)境,有利于幫助學(xué)生找準(zhǔn)新舊知識的連接點(diǎn),特別是問題3,其實(shí)就是等腰三角形三線合一性質(zhì)的伏筆。除了這些特殊點(diǎn),等腰三角形還有其它特殊性質(zhì)嗎?這節(jié)課我們就要一起來研究等腰三角形的性質(zhì)(由此引出課題)現(xiàn)代教學(xué)論認(rèn)為,在正式進(jìn)行發(fā)現(xiàn)過程前要讓學(xué)生對探索的目標(biāo)、意義認(rèn)識得十分明確,做好探索的物質(zhì)準(zhǔn)備和精神準(zhǔn)備。二、觀察與表達(dá)觀察猜想請同學(xué)們拿出準(zhǔn)備好的等腰三角形,與教師一起按照要求,把兩腰疊在一起,觀察一下你有什么發(fā)現(xiàn)。教師用多媒體課件演示等腰三角形ABC疊合情況,請學(xué)生思考你能得出哪些結(jié)論。 得出定理學(xué)生回答發(fā)現(xiàn)后,教師給予指導(dǎo),用規(guī)范的數(shù)學(xué)語言進(jìn)行逐條歸納,得出兩個性質(zhì)定理:定理1:等腰三角形兩底角相等。定理2:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。通過讓學(xué)生動手操作,觀察、猜想,體驗(yàn)知識的發(fā)生、發(fā)現(xiàn)過程,變灌注知識為學(xué)生主動獲取知識。學(xué)習(xí)內(nèi)容不再以定論的形式呈現(xiàn),而是以問題形式間接呈現(xiàn);學(xué)習(xí)的心理機(jī)制不再是僅僅是同化,而是順應(yīng)。三、了解與探究探索定理一、(A組口答,B組獨(dú)立解答)A組:等腰直角三角形的兩個銳角各等于幾度?若等腰三角形頂角為40度,則它的頂角為幾度?若等腰三角形底角為40度,則它的底角為幾度?B組:若等腰三角形一個內(nèi)角為40度,則它的其余各角為幾度?若等腰三角形一個內(nèi)角為120度,則它的其余各角為幾度?一個內(nèi)角為60度,則它的其余各角為幾度?(A組口答,B組獨(dú)立解答)由此引出推論:等邊三角形各個角都相等,且各個角都等于60176。二、根據(jù)性質(zhì)2填空:(1)∵AB=AC,AD⊥BC,∴。(2)∵AB=AC,BD=CD,∴。 AB D C (3)∵AB=AC,∠1=∠2,∴。為了對定理進(jìn)行進(jìn)一步探索,設(shè)計(jì)了以下練習(xí):練習(xí)一的整體設(shè)計(jì)遵循低起點(diǎn)、小分階、大容量、高密度的原則,其目的是要學(xué)生掌握應(yīng)用等腰三角形性質(zhì)定理1與三角形內(nèi)角和定理求角的度數(shù)的規(guī)律,但教師不是直接將規(guī)律灌輸給學(xué)生,而是讓學(xué)生在練習(xí)過程中自己發(fā)現(xiàn)規(guī)律,使學(xué)生獲得從問題中探索共同屬性的思維能力。從認(rèn)知結(jié)構(gòu)看,利用三線合一性質(zhì)來證明角相等、線段相等或垂直與學(xué)生原有認(rèn)知結(jié)構(gòu)聯(lián)系較少,需要建構(gòu)新的認(rèn)知結(jié)構(gòu),是一種“順應(yīng)”過程,對學(xué)生來說有一定困難,因此設(shè)計(jì)了下面一組填空題,幫助學(xué)生進(jìn)行建構(gòu)活動。同時,提醒學(xué)生注意性質(zhì)應(yīng)用應(yīng)以等腰三角形為前提,為例2的教學(xué)作了輔墊,起到分散難點(diǎn)的作用。四、應(yīng)用與提高應(yīng)用舉例:如圖,某房屋的頂角∠BAC=120176。,過屋頂A的立柱AD⊥BC,屋椽AB=AC,求頂架上的∠B, ∠C, ∠CAD的度數(shù)。例1:求證等腰三角形兩底角平分線相等AE DB C由于這是個用文字語言敘述的的幾何命題,師生共同商討,將解題過程分為以下幾個步驟:①根據(jù)命題畫出相應(yīng)的圖形,并標(biāo)出字母②通過分析題設(shè)結(jié)論,將命題翻譯為幾何符號語言,寫出已知與求證。 ③探索證法在尋求證法時啟發(fā)學(xué)生從“已知”、“求證”兩方面出發(fā)進(jìn)行思考。從已知出發(fā):a:由AB=AC聯(lián)想到什么b:BD、CE是△ABC的角平分線聯(lián)想到什么c:由a、b聯(lián)想到什么d:由a、b、c聯(lián)想到什么e:由d聯(lián)想到什么從求證出發(fā):證明兩條線段相等通常用什么方法?(全等三角形)。這兩條線段分別在哪兩個三角形中?這兩個三角形全等嗎?如何證明?本課從居民建筑人字梁結(jié)構(gòu)中抽象出幾何問題,通過探索實(shí)踐活動得出結(jié)論,在這里,再將得到的結(jié)論應(yīng)用到實(shí)踐中,從而解決了人字梁結(jié)構(gòu)中的實(shí)際問題。這樣既有前后呼應(yīng),又體現(xiàn)了“數(shù)學(xué)來源于生活,應(yīng)用于生活”的思想,有利于加強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識?!白C明”的教學(xué)所關(guān)注的是,對證明基本方法和證明過程的體驗(yàn),而不是追求所證命題的數(shù)量、證明的技巧。因此在例1教學(xué)中,有意讓學(xué)生來確定學(xué)習(xí)任務(wù)與步驟,充分調(diào)動其學(xué)習(xí)積極性。分析法和綜合法是基本的數(shù)學(xué)思想方法,因此在這里要求學(xué)生從兩方面都能夠思考問題。但這對于剛接觸論證幾何不久的`學(xué)生來說,有一定的難度。所以,由教師提出一系列問題,引導(dǎo)學(xué)生進(jìn)行聯(lián)想。本題是通過三角形全等來證明兩條角平分線相等,而這對全等三角形可是△ABD和△ACE也可是△BCE和△CBD分別用到了公共邊和公共角這兩對元素,因此在教學(xué)過程中將充分利用這一點(diǎn),組織學(xué)生探索證明的不同思路,并進(jìn)行適當(dāng)?shù)谋容^和討論,有利于開闊學(xué)生的視野。四、應(yīng)用與提高例2:已知:如圖,△ AOB D C O’ ABC中,AB=AC,O是△ABC內(nèi)一點(diǎn),且OB=OC,AO的延長線交BC與D.求證:BD=CD,AD⊥BC思考:(1)本題的結(jié)論有何特殊之處?——證明兩個結(jié)論(2)你準(zhǔn)備如何得出這兩個結(jié)論?——分別認(rèn)證或同時證明(3)哪一種簡捷?利用什么性質(zhì)?在此基礎(chǔ)上請學(xué)生按照例1的思考方法自己尋找解題思路,可以在小組間進(jìn)行討論。變式拓展:(1)如圖,在例2中若點(diǎn)O是△ABC外一點(diǎn),AO連線交BC于D,如何求證?(2)若點(diǎn)O在BC上呢?經(jīng)過例1的學(xué)習(xí),學(xué)生已有一定推理基礎(chǔ),因此應(yīng)放手讓學(xué)生自己去發(fā)現(xiàn)證題思路,從而學(xué)到新的研究數(shù)學(xué)學(xué)習(xí)的方法,并逐漸內(nèi)化為自己的經(jīng)驗(yàn)。同時也體現(xiàn)了自主探索、合作交流的學(xué)習(xí)方式。在這里有意通過變式讓學(xué)生經(jīng)歷圖形變換過程,并使他們感受到在一定條件下,圖形變換不會改變圖形的實(shí)質(zhì),最后將點(diǎn)O移到BC上,使學(xué)生體驗(yàn)了從一般到特殊的過程。想一想:記一塊等腰直角三角尺的底邊中點(diǎn)為,再從頂點(diǎn)懸掛一個鉛錘,把這塊三角尺放在房梁上,如果懸線通過點(diǎn)M就能確定房梁是水平的,為什么?通過想一想進(jìn)一步突出重點(diǎn)與難點(diǎn),也有利于引導(dǎo)學(xué)生運(yùn)用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實(shí)生活,增強(qiáng)應(yīng)用數(shù)學(xué)的意識。五、心得與體會通過今天這堂課的研究,我明確了,我的收獲與感受有,我還有疑惑之處是。請學(xué)生按這一模式進(jìn)行小結(jié),培養(yǎng)學(xué)生學(xué)習(xí)總結(jié)學(xué)習(xí)反思的良好習(xí)慣,同時通過自我的評價來獲得成功的快樂,提高學(xué)生學(xué)習(xí)的自信心。六、作業(yè)(1)作業(yè)本上相應(yīng)的作業(yè)。(2)已知:D、E在△ABC的邊BC上,AB=AC,AD=AE,求證:BD=CE(1)進(jìn)一步鞏固和提高所學(xué)知識(2)及時反饋、查漏補(bǔ)缺(3)體現(xiàn)層次性與開放性六、說評價第四篇:等腰三角形的性質(zhì)說課稿《等腰三角形的性質(zhì)》說課稿一、教材分析教學(xué)內(nèi)容:本節(jié)課是人教版八年級上冊《等腰三角形》的第一課時的內(nèi)容——等腰三角形的性質(zhì),等腰三角形是一種特殊的三角形,它除了具有一般三角形的性質(zhì)以外,還具有一些特殊的性質(zhì)。它是軸對稱圖形,具有對稱性,本節(jié)課就是要利用對稱的知識來研究等腰三角形的有關(guān)性質(zhì)。在教材中的地位與作用:三角形是最簡單、最基本的幾何圖形,它是研究其它圖形的基礎(chǔ),作為特殊的三角形——等腰三角形,應(yīng)用更為廣泛,因此,探索和掌握它的基本性質(zhì)對學(xué)生更好的認(rèn)識現(xiàn)實(shí)世界、發(fā)展空間觀念和推理能力都是很重要的。本節(jié)課是在學(xué)生掌握了一般三角形和軸對稱的知識,具有初步的推理證明能力的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,擔(dān)負(fù)著進(jìn)一步訓(xùn)練學(xué)生學(xué)會分析、學(xué)會證明的任務(wù),在培養(yǎng)學(xué)生的思維能力和推理能力等方面有重要的作用;而“等邊對等角”和“三線合一”的性質(zhì)是今后論證兩個角相等、兩條線段相等、兩條直線垂直的重要依據(jù),本節(jié)課是第三課時研究等邊三角形
點(diǎn)擊復(fù)制文檔內(nèi)容
規(guī)章制度相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1