【導讀】勾股定理的內(nèi)容是什么?如果已知三角形的三邊長a、b、c,怎樣。判定這個三角形是否為直角三角形?一圓柱體的底面周長為20cm,高AB為4。一只蜘蛛從長、寬都是3,高是8的長方體。如圖,從電桿離地面5米處向地面拉一條7米。一個圓柱形的封閉易拉罐,它的底面半徑。拌棒(直線型)最長可為多長?1、立體圖形中路線最短的問題,往往是把。2、在解決實際問題時,首先要畫出適當?shù)?
【總結】如圖所示,為了測得湖兩岸點A和點C間的距離,一個觀測者在點B設立了一根標桿,使∠ACB=90°.測得AB=200m,BC=160m.根據(jù)測量結果,求點A,C間的距離.ACB根據(jù)勾股定理,可得AC2=AB2-BC2=2021-1602=14400.所以AC=120(m)登山隊員在山頂一平
2024-12-08 15:17
【總結】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-17 23:29
【總結】勾股定理綜合練習(1)一棵樹從離地面3米處斷裂,樹頂落在離樹根部4米處,則樹高為米。(2)以一個直角三角形的一條直角邊為邊長的正方形的面積為225,以這個直角三角形的斜邊為邊長的正方形的面積為625,則以這個直角三角形的另一條直角邊為邊長的正方形的面積為。一、填空題(3)消防云梯的長度是3
2024-11-06 12:53
【總結】第14章勾股定理勾股定理的應用2022秋季數(shù)學八年級上冊?HS立體圖形上的最短距離:將立體圖形側面展開,確定兩點在展開圖上的位置,連成,的長度就是立體圖形上的兩點間的最短距離.自我診斷1.如圖,長方體的高為3cm,底面是正方形,邊長為2cm,現(xiàn)在一蟲子從點A出發(fā),沿長方體表面到
2025-06-13 14:08
【總結】在同一平面內(nèi),兩點之間,線段最短創(chuàng)設情境明確目標從行政樓A點走到教學樓B點怎樣走最近?教學樓行政樓BA你能說出這樣走的理由嗎?在同一平面內(nèi),如圖螞蟻在圓柱體的A點沿側面爬行到B點,怎樣爬路程最短?創(chuàng)設情境明確目標BA
2025-06-12 12:08
【總結】第一篇: 勾股定理的應用 執(zhí)筆人: 審核:八年級數(shù)學組課型:新授時間: 1、知識與方法目標:通過對一些典型題目的思考、練習,能正確、熟練的進行勾股定理有關計算,深入對勾股定理的理解。 2、過...
2024-11-18 22:10
【總結】勾股定理長春市第九十中學西校劉芳2020年5月20日歡迎您進入劉芳老師的課堂課前導學?三角形兩邊的和大于第三邊;?在直角三角形中,斜邊大于任意一條直角邊;?對于比較特殊的直角三角形(如右圖),如果一個銳角等于30°,那么它所對的直角
2024-11-06 13:14
【總結】精彩回憶在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做圖形的平移。平移不改變圖形的形狀、大小,只改變圖形的位置。它由移動的方向和距離決定ABCDA`B`C`D`做一做ABCFDE點A的對應點是點____;點B的對應點是點____;
2024-12-08 14:07
【總結】勾股定理的應用------初三復習課第24屆國際數(shù)學大會會徽ICM2020我國已故著名數(shù)學家華羅庚教授建議..讓宇宙飛船帶著兩三個數(shù)學圖形飛到宇宙空間,其中一個是
2024-11-06 19:33
【總結】(1)若x=-3,則20x2+60x=_____(2)若a=99,b=-1,則a2-2ab+b2=_____(3)若a=101,b=99,則a2-b2=_____原式=20x(x+3)=20×(-3)(-3+3)=0原式=(a+b)(a-b)=(101+99)(101-99)=400原式=(a-b)2
2024-11-30 07:50
【總結】東園中學206班執(zhí)教者:陳朝財中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學知識的對話:周公問:“我聽說您對數(shù)學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關于天地的數(shù)據(jù)呢?”商高回答說:“數(shù)的產(chǎn)生來源于對方和圓這些形體的認識。其中有一條原理:
2024-11-30 08:01
【總結】第14章勾股定理14.2勾股定理的應用第2課時勾股定理在數(shù)學中的應用目標突破總結反思第14章勾股定理知識目標勾股定理的應用知識目標1.在理解勾股定理及其逆定理的基礎上,經(jīng)過觀察、分析、探究,能畫出長為無理數(shù)的線段.2.通過分析圖形、思考、討論,能夠將與直角三角形有關的數(shù)學問題
【總結】(第3課時)《勾股定理證明方法匯總》課前自主探究活動方法種類及歷史背景驗證定理的具體過程知識運用及思想方法探究報告具體的做法是:請各個學習小組從網(wǎng)絡或書籍上,盡可能多地尋找和了解驗證勾股定理的方法.驗證過程的分析與欣賞第一種類型:以趙
2024-11-30 08:15
【總結】第14章勾股定理勾股定理的應用第1課時勾股定理的應用1.勾股定理的變形:若直角三角形的兩直角邊分別為a、b,斜邊為c,則a2+b2=c2或a2=或b2=或a=或b=.2.
2025-06-19 17:54
【總結】第14章勾股定理勾股定理的應用第2課時勾股定理及其逆定理的綜合應用用勾股定理及逆定理可以解決實際生活中的很多問題,勾股定理的條件是,逆定理的條件是.直角三角形三角形兩邊的平方和等于第三邊的平方◎知識點勾股
2025-06-18 00:14