【總結(jié)】abc學(xué)習(xí)目標(biāo)課堂小結(jié)鞏固練習(xí)例題講解學(xué)習(xí)五步曲探究新知學(xué)習(xí)目標(biāo)1、掌握勾股定理,了解利用拼圖驗(yàn)證勾股定理的方法.2、能運(yùn)用勾股定理由已知直角三角形中的兩邊長,求出第三邊長.3、能正確靈活運(yùn)用勾股定理及由它得到的直角三角形的判別方法.2022年在北京召開的國際數(shù)學(xué)家大會(huì)
2025-06-13 13:41
【總結(jié)】第14章勾股定理第2課時(shí)我們知道直角三角形中,兩條直角邊的平方和等于斜邊的平方,如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?今天這節(jié)課我們就來學(xué)習(xí)這個(gè)問題。創(chuàng)設(shè)情境明確目標(biāo)...學(xué)習(xí)目標(biāo)下面有三組數(shù)分別是一個(gè)三角形的三邊長
2025-06-12 12:08
【總結(jié)】第14章勾股定理14.2勾股定理的應(yīng)用第1課時(shí)勾股定理在生活中的應(yīng)用目標(biāo)突破總結(jié)反思第14章勾股定理知識(shí)目標(biāo)勾股定理的應(yīng)用知識(shí)目標(biāo)1.經(jīng)過觀察、操作、討論、發(fā)現(xiàn),歸納理解立體圖形表面最短路徑問題的求解思路.2.在理解勾股定理及其逆定理的基礎(chǔ)上,通過分析、探究,能夠?qū)⑵渌麑?shí)際問
【總結(jié)】第14章勾股定理章末小結(jié)2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS【易錯(cuò)分析】易錯(cuò)點(diǎn)1.在應(yīng)用勾股定理時(shí),沒有分清直角邊與斜邊【例1】在Rt△ABC中,∠A=90°,a=13cm,b=5cm,求第三邊c.【解答】解:在Rt△ABC中∠A=90
2025-06-21 05:33
【總結(jié)】勾股定理的應(yīng)用(1)知識(shí)回憶:cab勾股定理及其數(shù)學(xué)語言表達(dá)式:直角三角形兩直角邊a、b的平方和等于斜邊c的平方.222cba??CABcab222cba??在△ABC中,∠C=90°.(1)若b=8,c=10,則a=
2025-06-12 01:47
【總結(jié)】勾股定理的應(yīng)用(2)復(fù)習(xí)提問:1、勾股定理的內(nèi)容是什么?2、勾股定理的逆定理是什么?3、三角形的面積公式是什么?4、如何解決不規(guī)則圖形的問題?我們利用圖形的割或補(bǔ)得方法來解決此類問題。(2)畫出所有的以(1)中所畫線段為腰的等腰三角形.學(xué)習(xí)新知例2:如圖,已知CD=6m,
【總結(jié)】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-13 13:51
2025-06-17 23:29
2025-06-26 22:55
【總結(jié)】勾股定理的應(yīng)用㈡◆如圖,在的正方形網(wǎng)格中,每個(gè)小正方形的邊長都為.⑴從點(diǎn)A出發(fā)的一條線段AB,使它的另一個(gè)端點(diǎn)落在格點(diǎn)(即小正方形的頂點(diǎn))上,且長度為;22A.◆如圖,在的正方形網(wǎng)格中,每個(gè)小正方形的邊長都為.A.⑵以⑴中的AB為邊的一個(gè)等腰三角形ABC,使點(diǎn)C在格點(diǎn)上,且另
2025-06-17 16:58
【總結(jié)】勾股定理的應(yīng)用㈢◆如圖,公路MN和小路PQ在點(diǎn)P處交匯,且∠QPN=30°,點(diǎn)A處有一所學(xué)校,AP=160m,假設(shè)拖拉機(jī)行駛時(shí),周圍100m內(nèi)受噪音影響,那么拖拉機(jī)在公路MN上以18km/h的速度沿PN方向行駛時(shí),學(xué)校是否受到噪音的影響?如果學(xué)校受到影響,那么受影響將持續(xù)多長時(shí)間?PM
2025-06-17 17:00
【總結(jié)】平平湖水清可鑒,荷花半尺出水面。忽來一陣狂風(fēng)急,吹倒荷花水中偃。湖面之上不復(fù)見,入秋漁翁始發(fā)現(xiàn)。殘花離根二尺遠(yuǎn),試問水深尺若干。勾股定理的應(yīng)用㈠◆南京玄武湖東西隧道與中央路北段及龍?bào)绰反笾鲁芍苯侨切?從C處到B處,如果直接走湖底隧道CB,比繞道CA(約)和AB(約)減少多少行程?玄武湖
2025-06-17 17:14
【總結(jié)】第14章勾股定理勾股定理直角三角形三邊的關(guān)系第2課時(shí)勾股定理的驗(yàn)證及其簡單應(yīng)用拼圖法大多數(shù)是利用驗(yàn)證勾股定理.利用定理,知道直角三角形任意兩條邊的長,可求出的長,并能利用它解決相關(guān)的簡單的實(shí)際問題.例如一根長為5米的木桿斜靠在墻上(如圖),桿底距墻的下沿的距離B
2025-06-16 20:57
【總結(jié)】課堂反饋1.如圖41-1,一圓柱高8cm,底面半徑為6πcm,一只螞蟻從點(diǎn)A沿外表面爬到點(diǎn)B處吃食,要爬行的最短路程是()A.6cmB.8cmC.10cmD.12cm圖41-1C2.如圖41-2,有兩棵樹,一棵高
2025-06-18 00:06
2025-06-17 04:01