【導(dǎo)讀】=12BC,則sin∠MCA=________.解析由弦切角定理得,∠MCA=∠ABC,解析∵CD是⊙O的切線,∴OC⊥CD,由此得,∠ACO=∠CAD,∵OC=OA,∴∠CAO=∠ACO,∴∠CAD=∠CAO,故AC平分∠DAB.∴∠CAO=40°,BD,若BC=5-1,則AC=________.=36°,所以△BCD∽△ACB,又易知BD=AD=BC,所以BC2=CD·AC=·AC,解得AC=2.∴BC為圓的切線,AB為圓的割線,∴BC2=BD·AB,即16=BD·5,解得BD=165,∴DA=BA-BD=5-165=95,∴BDDA=169.解析∵∠P=∠P,∠PCB=∠PAD,∵PBPA=12,PCPD=13,∴BCAD=66.中,∵EF⊥DB,∴由射影定理得DF·DB=DE2=5.∴AB2=BC·BD=2×4=8.行四邊形,故CD=AF.由可知BD=CF,所以GB=∠BGD=∠BDG.由BC=CD知∠CBD=∠CDB.而∠DGB=∠EFC=∠DBC,結(jié)DB并延長交⊙O于點(diǎn)E.同理∠ACB=∠DAB,由AD與⊙O相切于A,得∠AED=∠BAD,又∠ADE=∠BDA,得△EAD∽△ABD.結(jié)合的結(jié)論知,AC=AE.