freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

淺談?dòng)梅趴s法證明不等式的方法與技巧-資料下載頁

2024-10-28 06:44本頁面
  

【正文】 12 +51;?? ??12+19+12+29+L+121011 ++L+101010244223142444291 =將上面的不等式兩邊相加,得到:12+13+14+L+12121012102=912;513+1;+L+1210 于是,綜上得到5+4 結(jié)綜上可知,放縮法的技巧千變?nèi)f化,放縮法貫穿于整個(gè)不等式的證明過程中,不等式證明的每一步幾乎都與“放”與“縮”:(1)在放縮過程中不等號的方向必須一致;(2)運(yùn)算時(shí)要注意總結(jié)規(guī)律,有些不等式用特定的放縮方法可以使計(jì)算簡便,而有些不等式可以用很多種方法解決;(3)不等式的放縮法在不等式的證明中應(yīng)用廣泛,但是遇到具體題目時(shí)不能生搬硬套,用放縮法證明不等式關(guān)鍵就是“度”的把握,如果放得過大或太小就會導(dǎo)致解題失敗,而如果放縮不適當(dāng)要學(xué)會調(diào)整,一些實(shí)用的技巧可以幫助我們把握放縮中的“度”,而具體怎樣放縮才適度,放縮方法更是多種多樣,要能恰到好處的想到具體解題中的放縮方法,需要積累一定的不等式知識, 17 致謝感謝我的導(dǎo)師,她在我的論文寫作過程中傾注了大量心血,從選題開始到開題報(bào)告,從寫作提綱到一遍遍的指出稿中的具體問題,每一個(gè)工作她都做得那么的細(xì)致認(rèn)真,她的嚴(yán)謹(jǐn)?shù)膽B(tài)度和工作風(fēng)深深的感動(dòng)著每一個(gè)了解她的人。我還要感謝我的許多同學(xué),他們在我的論文寫作中給予了大量的支持和幫助,同學(xué)都對我的論文格式和內(nèi)同的修改給予了大量的幫助,在此我也深深的感謝他們,同時(shí)我還要感謝在我大學(xué)學(xué)習(xí)期間給我極大關(guān)心和支持的各位老師同學(xué)還有朋友,感謝你們!感謝老師!參考文獻(xiàn):[1][J].湖北廣播電視大學(xué)學(xué)報(bào),2008,28(9):143144.[2][J].中學(xué)數(shù)學(xué)研究,2003,(9):3234.[3]李長明,[M].北京高等教育出版社,2005,266267.[4],證明不等式的基本方法[J].上海中學(xué)數(shù)學(xué),2005,(10):3536.[5][J].文教資料,2005,(4):7273.[6][J].數(shù)學(xué)通訊,2005,(3):2324.[7][J].運(yùn)城高等??茖W(xué)校學(xué)報(bào),2000,18(3):9596.[8][J].科技教育,2010,(29):213214.[9],順應(yīng)目標(biāo)——例談放縮法在證明不等式中的應(yīng)用[J].數(shù)學(xué)教學(xué)研究,2007,(9):2628.[10]“失控”的調(diào)整初探[J].中學(xué)數(shù)學(xué),2007,(1):2931.[11]——兼談幾個(gè)不等式的加強(qiáng)[J].湖南理工學(xué)院學(xué)報(bào)(自然科學(xué)版),2010,23(3):913.[12]《數(shù)學(xué)分析》上的應(yīng)用[J].瓊州大學(xué)學(xué)報(bào),2002,9(2):1014.[13]“放大法”[J].衡水學(xué)院學(xué)報(bào),2009,11(4):37.第五篇:放縮法證明不等式放縮法證明不等式在學(xué)習(xí)不等式時(shí),放縮法是證明不等式的重要方法之一,在證明的過程如何合理放縮,是證明的關(guān)鍵所在?,F(xiàn)例析如下,供大家討論。例1:設(shè)a、b、c是三角形的邊長,求證abc≥3 ++b+cac+aba+bc證明:由不等式的對稱性,不妨設(shè)a≥b≥c,則b+ca≤c+ab≤a+bc且2cab≤0,2abc≥0∴= ∴abcabc++3=1+1+1b+cac+aba+bcb+cac+aba+bc2abc2bac2cab2abc2bca2cab≥++++=0b+cac+aba+bcc+abc+abc+ababc≥3 ++b+cac+aba+bc2bac無法放縮。所以在運(yùn)用放c+ab[評析]:本題中為什么要將b+ca與a+bc都放縮為c+ab呢?這是因?yàn)?cab≤0,2abc≥0,而2bac無法判斷符號,因此縮法時(shí)要注意放縮能否實(shí)現(xiàn)及放縮的跨度。例2:設(shè)a、b、c是三角形的邊長,求證abc(bc)2+(ca)2+(ab)2≥ b+cc+aa+b1 [(ab)2+(bc)2+(ca)2]3證明:由不等式的對稱性,不防設(shè)a≥b≥c,則3abc0,3bca≥b+c+cca=b+ca0左式-右式=3abc3bca3cab(bc)2+(ca)2+(ab)2 b+ca+ca+b3bca3cab(ca)2+(ab)2 a+ba+b2(b+ca)3bca3cab(ab)2+(ab)2=(ab)2≥0 a+ba+ba+b ≥ ≥[評析]:本題中放縮法的第一步“縮”了兩個(gè)式了,有了一定的難度。由例例2也可知運(yùn)用放縮法前先要觀察目標(biāo)式子的符號。例3:設(shè)a、b、c206。R+且abc=1求證111≤1 =+1+a+b1+b+c1+c+a證明:設(shè)a=x3,b=y3,c= x、y、z206。R+.由題意得:xyz=1。∴1+a+b=xyz+x3+y3∴x3+y3(x2y+xy2)=x2(xy)+y2(yx)=(xy)2(x+y)≥0 ∴x3+y3≥x2y+xy2∴1+a+b=xyz+x3+y3≥xyz+xy(x+y)=xy(x+y+z)∴1z1=≤xy(x+y+z)x+y+z1+a+byx11≤,≤ ∴+y+zx+y+z1+b+c1+c+a同理:由對稱性可得[評析]:本題運(yùn)用了排序不等式進(jìn)行放縮,后用對稱性。39例4:設(shè)a、b、c≥0,且a+b+c=3,求證a2+b2+c2+abc≥22證明:不妨設(shè)a≤b≤c,則a≤1又∵(44?!郺0。33a+b23a23434)≥bc,即()≥bc,也即bc(a)≥(3a)2(a)。2223833∴左邊=(a+b+c)22(ab+bc+ca)+abc23434 =92a(b+c)+bc(a)≥92a(3a)+(3a)2(a)2383341633=9+(3a)[(3a)(a)a]=9(3a)[a2=a+4]=9(a3+2a2a+12)83388=99393+a(a22a+1)=+a(a1)2≥2282893 ∴a2+b2+c2+abc≥22[評析]:本題運(yùn)用對稱性確定符號,在使用基本不等式可以避開討論。例5:設(shè)a、b、c206。R+,p206。R,求證:abc(ap+bp+cp)≥ap+2(a+b+c)+bp+2(ab+c)+cp+2(a+bc)證明:不妨設(shè)a≥b≥c>0,于是左邊-右邊=ap+1(bc+a2abca)+bp+1(ca+b2bcab)+cp+1(ab+c2cabc)=ap+1(ab)[(ab)+(bc)]bp+1(ab)(bc)+cp+1[(ab)+(bc)](bc)=ap+1(ab)2+(ab)(bc)(ap+1bp+1+cp+1(bc)2≥(ab)(bc)(ap+1bp+1+cp+1)如果p+1≥0,那么ap+1bp+1≥0;如果p+1<0,那么cp+1bp+1≥0,故有(ab)(bc)(ap+1bp+1+cp+1)≥0,:設(shè)0≤a≤b≤c≤1,求證:abc+++(1a)(1b)(1c)≤1b+c+1c+a+1a+b+1abca+b+c≤,再證明以 ++b+c+1c+a+1a+b+1a+b+1證明:設(shè)0≤a≤b≤c≤1,于是有下簡單不等式a+b+ca+b+1c1+(1a)(1b)(1c)≤1,因?yàn)樽筮?++(1a)(1b)(1c)a+b+1a+b+1a+b+1=11c[1(1+a+b)(1a)(1b)],再注意(1+a+b)(1a)(1b)≤(1+a+b+ab)a+b+1(1a)(1b)=(1+a)(1+b)(1a)(1b)=(1a2)(1b2)≤≤B,我們找一個(gè)(或多個(gè))中間量C作比較,即若能斷定A ≤C與C≤B同時(shí)成立,那么A≤B顯然正確。所謂的“放”即把A放大到C,再把C放大到B,反之,所謂的“縮”即由B縮到C,再把C縮到A。同時(shí)在放縮時(shí)必須時(shí)刻注意放縮的跨度,放不能過頭,縮不能不及。
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1