【導讀】S3=a1-q31-q=3,①?!鄎=2,故選A.4.在各項為正數(shù)的等比數(shù)列中,若a5-a4=576,a2-a1=9,則a1+a2+a3+a4+a5的值。[解析]由題意得a4(q-1)=576,a1(q-1)=9,=q3=64,∴q=4,∴a1=3,[解析]若數(shù)列{an}是等比數(shù)列,Sn為其前n項和,由Sn=A,S2n-Sn=B-A,S3n-S2n=C-B,運算性質(zhì).根據(jù)條件可知,等比數(shù)列的通項公式是an=2×n-4,設(shè)bn=lgan=lg2+(n-。7.設(shè)Sn為等比數(shù)列{an}的前n項和.若a1=1,且3S1,2S2,S3成等。差數(shù)列,則an=________.[解析]∵3S1,2S2,S3成等差數(shù)列,∴2×2=3a1+a1+a2+a3,∴a3=3a2,∴q. 又∵等比數(shù)列{an},∴an=a1qn-1=3n-1.S9=20+22+24+26+28+3+7+11+15=377.9.已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,求數(shù)列{an}和{bn}的通項公式;所以,數(shù)列{bn}的前n項和為32n(n+1)+2n-1.a1+a2+a3=3a1+3d=12,+a99=60,則a1+a2+a3+…∴a1+a2+a3+…+a100)=60+30=90.∴S9=4S3+S6=7S3,