【導讀】例1、求過點(0,1)P且與拋物線22yx?只有一個公共點的直線方程.例2、頂點在原點,焦點在x軸上的拋物線截直線21yx??3.若直線l過拋物線xy42?的焦點,與拋物線交于BA,兩點,且線段AB中點的橫坐標。截得的弦長為10,的面積為4,則拋物線方程為。的距離最短的點的坐標是_____。相交于A,B兩點,且OAOB?
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學拋物線的幾何性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.對拋物線x2=-3y,下列說法正確的是________.①此拋物線關(guān)于y軸對稱;②焦點坐標為(0,34);③此拋物線與拋物線x2=3y關(guān)于x軸對稱.【解析】拋物線x2=-
2024-12-04 18:02
【總結(jié)】直線與拋物線的位置關(guān)系(二)【學習目標】解決直線與拋物線位置有關(guān)的簡單問題,進一步體會數(shù)形結(jié)合的思想.【自主檢測】3x-4y-12=0上的拋物線標準方程是()(A)y2=16x或x2=16y(B)y2=16x或x2=12y(C)x2=-12y或y2=16x(D)x2=16y或
2024-11-19 23:25
【總結(jié)】(五)【學習目標】解決直線與拋物線位置有關(guān)的簡單問題,進一步體會數(shù)形結(jié)合的思想.【典型例題】例A(2,8),B(x1,y1),C(x2,y2)在拋物線22(0)ypxp??上,△ABC的重心與此拋物線的焦點F重合.(1)寫出該拋物線的方程和焦點F的坐標;(2)求線段BC
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學拋物線的標準方程課后知能檢測蘇教版選修1-1一、填空題1.(20212揚州高二檢測)拋物線y2=12x的焦點坐標為________.【解析】拋物線y2=12x的焦點在x軸的正半軸上,且p=14,∴p2=18,故焦點坐標為(18,0
【總結(jié)】第5課時拋物線的簡單性質(zhì)、頂點坐標和離心率并展開應用.了解“p”的意義,會求簡單的拋物線方程.、橢圓的類比,體會探究的樂趣,激發(fā)學習熱情.某公園要建造一個如圖1的圓形噴水池,在水池中央垂直于水面安裝一個花形柱子OA,O恰在水面中心,OA=米,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向
2024-12-05 06:39
【總結(jié)】拋物線的幾何性質(zhì)課題第1課時計劃上課日期:教學目標知識與技能掌握拋物線的幾何性質(zhì),能應用拋物線的幾何性質(zhì)解決問題過程與方法情感態(tài)度與價值觀教學重難點拋物線的幾何性質(zhì).教學流程\內(nèi)容\板書關(guān)鍵點撥加工潤色一、復習回顧拋物線的標
2024-11-20 00:30
【總結(jié)】拋物線的標準方程教學目標]知識與技能1.掌握拋物線的定義和標準方程及其推導過程,理解拋物線中的基本量;2.掌握求拋物線的標準方程的基本方法;[過程與方法情感態(tài)度與價值觀教學重難點能根據(jù)已知條件求拋物線的標準方程教學流程\內(nèi)容\板書關(guān)鍵點撥加工潤色一、復
【總結(jié)】《拋物線及標準方程》教學目標?知識與技能目標?使學生掌握拋物線的定義、拋物線的標準方程及其推導過程.?要求學生進一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉(zhuǎn)化等方面的能力.?過程與方法目標?情感,態(tài)度與價值觀目標?(1)培養(yǎng)學生用對稱的美學思維來體現(xiàn)數(shù)學的和諧美。?(2)培養(yǎng)學生
2024-11-18 12:15
【總結(jié)】拋物線的幾何性質(zhì)(二)一、基礎(chǔ)過關(guān)1.已知拋物線y2=2px(p0),過其焦點且斜率為1的直線交拋物線于A、B兩點,若線段AB的中點的縱坐標為2,則該拋物線的準線方程為()A.x=1B.x=-1C.x=2D.x=-22.已知拋物線y2=2px(p0
2024-11-19 10:30
【總結(jié)】拋物線的幾何性質(zhì)(一)一、基礎(chǔ)過關(guān)1.設點A為拋物線y2=4x上一點,點B(1,0),且|AB|=1,則A的橫坐標的值為()A.-2B.0C.-2或0D.-2或22.以x軸為對稱軸的拋物線的通徑(過焦點且與x軸垂直的弦)長為8,若拋物線的頂點在坐標原點,則其方程為
【總結(jié)】第6課時拋物線的簡單性質(zhì)的應用,會利用幾何性質(zhì)求拋物線的標準方程、焦點坐標、準線方程、焦半徑和通徑.,理解拋物線的焦點弦的特殊意義,結(jié)合定義得到焦點弦的公式,并利用該公式解決一些相關(guān)的問題.我們已經(jīng)學習了拋物線及拋物線的簡單幾何性質(zhì),拋物線的幾何性質(zhì)應用非常廣泛,通過類比橢圓、雙曲線的幾何性質(zhì),結(jié)合拋物線的標
2024-11-19 23:17
【總結(jié)】判斷直線與雙曲線位置關(guān)系的操作程序把直線方程代入雙曲線方程得到一元一次方程得到一元二次方程直線與雙曲線的漸進線平行相交(一個交點)計算判別式0=00相交相切相離復習:練習:判斷下列直線與雙曲線的位置關(guān)系相交(一個交點)11625:,1
2025-10-07 19:31
2024-11-18 11:25
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學拋物線的幾何性質(zhì)課后知能檢測新人教B版選修1-1一、選擇題1.(2021·泰安高二檢測)已知拋物線的頂點在原點,以x軸為對稱軸,焦點為F,過F且垂直于x軸的直線交拋物線于A,B兩點,且|AB|=8,則拋物線的標準方程為()A.y2=8x
2024-12-03 11:30
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學拋物線及其標準方程課后知能檢測新人教B版選修1-1一、選擇題1.(2021·濟南高二檢測)若動點P與定點F(1,1)和直線3x+y-4=0的距離相等,則動點P的軌跡是()A.橢圓B.雙曲線C.拋物線D.直線【解析】