freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

北京市第八中學(xué)20xx屆高三數(shù)學(xué)復(fù)習(xí)函數(shù)單調(diào)性與最值作業(yè)1理-資料下載頁

2024-12-03 06:55本頁面

【導(dǎo)讀】單調(diào)遞增的函數(shù)是(). 單調(diào)增加,則滿足1(). 上的減函數(shù),則a的取值范圍。已知工人組裝第4件產(chǎn)品用時(shí)30分鐘,組裝第A件產(chǎn)品用時(shí)15分鐘,那么。,它至多有一個(gè)原象;④函數(shù)()fx在某區(qū)間上具有單調(diào)性,則()fx一定是單函數(shù)。其中的真命題是________。=|x|+1的圖象如圖所示,知y=|x|+1符合題意,故選B.解:法一由x∈R,f(-1)=2,f′>2,可設(shè)f=4x+6,則由4x+6>2x+4,得。解:∵cA=15,故A>4,則有c2=30,解得c=60,A=16,將c=60,A=16代入解析式檢。驗(yàn)知正確.故選D.②,當(dāng)x1,x2∈A,f=f時(shí)有x1=x2,與x1≠x2時(shí),f≠f互為逆否命題,②。正確;對(duì)③,若b∈B,b有兩個(gè)原象時(shí).不妨設(shè)為a1,a2可知a1≠a2,但f=f,與。證明任設(shè)x1<x2<-2,∵>0,x1-x2<0,∵a>0,x2-x1>0,∴要使f-f>0,只需>0在內(nèi)恒成立,∴a≤1.綜上知0

  

【正文】 (1)若 2a?? ,試證 ()fx 在 ( , 2)??? 內(nèi)單調(diào)遞增; (2)若 0a? 且()fx在 (1, )?? 內(nèi)單調(diào)遞減,求 a 的取值范圍 。 (1)證明 任設(shè) x1< x2<- 2, 則 f(x1)- f(x2)= x1x1+ 2- x2x2+ 2= x1- x2x1+ x2+. ∵( x1+ 2)(x2+ 2)> 0, x1- x2< 0, ∴ f(x1)< f(x2), ∴ f(x)在 (- ∞ ,- 2)內(nèi)單調(diào)遞增. (2)解 任設(shè) 1< x1< x2,則 f(x1)- f(x2)= x1x1- a- x2x2- a= a x2- x1x1- a x2- a. ∵ a> 0, x2- x1> 0, ∴ 要使 f(x1)- f(x2)> 0,只需 (x1- a)(x2- a)> 0 在 (1,+ ∞) 內(nèi)恒成立, ∴ a≤1. 綜上知 0< a≤1. 已知函數(shù) ( ) 2 3xxf x a b? ? ? ?,其中常數(shù) ,ab滿足 0ab? 。 (1)若 0ab? ,判斷函數(shù) ()fx 的單調(diào)性; (2)若 0ab? ,求 ( 1) ( )f x f x?? 時(shí)的 x 的 取值范圍. 解 : (1)當(dāng) a> 0, b> 0時(shí),因?yàn)?a2 x, b3 x都單調(diào)遞增,所以函數(shù) f(x)單調(diào)遞增; 當(dāng) a< 0, b< 0時(shí),因?yàn)?a2 x, b3 x都單調(diào)遞減,所以函數(shù) f(x)單調(diào)遞減. (2)f(x+ 1)- f(x)= a2 x+ 2b3 x> 0. (i)當(dāng) a< 0, b> 0時(shí), 3()22x ab??,解得32log ( )2ax b??; (ii)當(dāng) a> 0, b< 0時(shí), 3()22x ab??,解得32log ( )2ax b??.
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1