【導(dǎo)讀】3a1+12×3×2×d=3.解得??解析:∵公差d<0,∴a1>a2>a3>…3.設(shè){an}是公差為-2的等差數(shù)列,如果a1+a4+a7+…+a97=50,則a3+a6+a9+…+a99=a1+a4+…+a97+2d×33=50+66×(-2)=-82,故選D.由4n+1=1+×2,得n′=2n+1.5.已知數(shù)列{an}、{bn}都是等差數(shù)列,a1=-2021,b1=2021,Sn、Sn′分別表示{an}、解析:由x=2+5k,20<k<100,k∈Z,7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S12=84,S20=460,求S28.∴Sn=2n2-17n,∴S28=1092.8.設(shè)等差數(shù)列{an}滿足a3=5,a10=-9.數(shù)列{an}的通項(xiàng)公式為an=11-2n.解析:∵a1+a8=a4+a5=12,∴S8=8×?解析:由3+2=24,得6a4+6a10=24.∴a4+a10=a1+a13=4,則。解析:a1=-2<0,S4=S6,故d>0且a5+a6=0,∴a5<0,a6>0,S5最小.故選C.解析:∵a4+a5=a1+a8=18,∴S8=8?解析:當(dāng)n≥2時(shí),an=Sn-Sn-1=16n2+12n-1-[16(n-1)2+12(n-1)-1]=32n-4,∴a1=32-4=28而S1=27,∴a1≠S1,故選D.