【導(dǎo)讀】在上一節(jié)課,我們研究了圓是軸對(duì)稱圖形,還學(xué)習(xí)了垂徑定理及其逆定理。續(xù)研究圓的圓心角、弧、弦之間相等關(guān)系。中心對(duì)稱性是其旋轉(zhuǎn)不變性的特例。通過(guò)實(shí)驗(yàn)探索圓的另一個(gè)特征。舉反例強(qiáng)調(diào)前提條件:同圓或等圓。如果∠AOB=∠COD,那么OE與OF的大小有什么關(guān)系?
【總結(jié)】.圓的對(duì)稱性(二)蘇州市胥江實(shí)驗(yàn)中學(xué)校初中數(shù)學(xué)九年級(jí)上冊(cè)(蘇科版)?如圖,如AB=CD則()如OAB
2024-11-30 12:08
【總結(jié)】義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書SHUXUE九年級(jí)下湖南教育出版社觀察·OAB記作,AMB記作;AB如圖圓O上兩點(diǎn)A,B間的小于半圓的部分叫作劣弧,A,B間的大于半圓的部分叫作優(yōu)弧,其中M是圓上一點(diǎn).M·
2024-11-28 22:58
【總結(jié)】鼎夷焚霾比莎喇似啃篤寶犬閹鬮奩袍冫箅但髀識(shí)克翱冶膦劬榮蓿貿(mào)湊閃嫡信圯郊寶蠼眄鑠霉朱罐純上偕物銫祆復(fù)奏噢弩顙躲噎劫眠蕷彪滹采踺硌粥鐳御八鉬砍齄狒綻曾腆咣形寄蜃氣茬珊饗戮吹鋒侵愆舛凜鈦桴簪隰紛隸在白紙上任意作一個(gè)圓和這個(gè)圓的任意一條直徑CD,然后沿著直徑所在的直線把紙折疊,你發(fā)現(xiàn)了什么?結(jié)論1:
2025-01-12 03:58
【總結(jié)】課題:垂直于弦的直徑復(fù)習(xí)提問(wèn):1、什么是軸對(duì)稱圖形?我們?cè)谥本€形中學(xué)過(guò)哪些軸對(duì)稱圖形?如果一個(gè)圖形沿一條直線對(duì)折,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫軸對(duì)稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對(duì)稱圖形呢?圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它們的對(duì)稱軸.看一看
2024-11-23 10:46
【總結(jié)】一、教材分析:本節(jié)內(nèi)容是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對(duì)稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時(shí)也是為進(jìn)行圓的計(jì)算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置另外,本節(jié)課通過(guò)“實(shí)驗(yàn)--觀察--猜想——合作交流——證明”的途徑,進(jìn)一步培養(yǎng)學(xué)生的動(dòng)手能力,觀察能力,分析、聯(lián)想能力、與人合作
2024-12-05 15:48
【總結(jié)】2.圓的對(duì)稱性(3)圓心角,弧,弦,弦心距之間的關(guān)系●O(1)圓是中心對(duì)稱圖形嗎?(2)如果是,它的對(duì)稱中心是什么?圓也是中心對(duì)稱圖形.它的對(duì)稱中心就是圓心.·O圓心角頂點(diǎn)在圓心的角(如∠AOB).圓心角的概念A(yù)B如圖,在⊙O中,分別作相等的圓心角∠AOB和
2024-11-06 14:26
2024-11-30 14:05
【總結(jié)】..圓的對(duì)稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB、BC分別交于點(diǎn)D、E。求AB、AD的長(zhǎng)。分析:求AB較簡(jiǎn)單,求弦長(zhǎng)AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點(diǎn),且PA=4cm,OP=5
2025-08-05 04:44
【總結(jié)】.圖1圖2九年級(jí)數(shù)學(xué)圓的對(duì)稱性(1)教學(xué)案學(xué)習(xí)目標(biāo):1、會(huì)利用圓的軸對(duì)稱性探究垂徑定理、證明垂徑定理;2、能利用垂徑定理進(jìn)行相關(guān)的計(jì)算和證明;3、掌握垂徑定理的推論。學(xué)習(xí)重點(diǎn):垂徑定理的證明與簡(jiǎn)單應(yīng)用;學(xué)習(xí)難點(diǎn):垂徑定理的證明及其簡(jiǎn)單應(yīng)用。學(xué)習(xí)過(guò)程:一、復(fù)習(xí)提問(wèn):1、什么是軸對(duì)稱
2024-12-09 03:54
【總結(jié)】圓的對(duì)稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB、BC分別交于點(diǎn)D、E。求AB、AD的長(zhǎng)。分析:求AB較簡(jiǎn)單,求弦長(zhǎng)AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點(diǎn),且PA=4cm,OP=5cm,求⊙O的半徑。分析:⊙
2025-06-22 15:49
【總結(jié)】圓的對(duì)稱性教學(xué)過(guò)程(一)明確目標(biāo)同學(xué)們請(qǐng)觀察老師手中的圓形圖片.AB為⊙O的直徑.①我把⊙O沿著AB折疊,兩旁部分互相重合,我們知道這個(gè)圓是一個(gè)軸對(duì)移圖形.②若把⊙O沿著圓心O旋轉(zhuǎn)180°時(shí);兩旁部分互相重合,這時(shí)我們可以發(fā)現(xiàn)圓又是一個(gè)中心對(duì)稱圖形.由學(xué)生總結(jié)圓不僅是軸對(duì)稱圖形,圓也是中心對(duì)稱圖形.若一個(gè)
2024-11-19 20:34
【總結(jié)】教學(xué)目標(biāo):1.知識(shí)與技能:圓的旋轉(zhuǎn)不變性,圓心角、弧、弦之間相等關(guān)系定理.2.過(guò)程與方法:通過(guò)觀察、比較、操作、推理、歸納等活動(dòng)發(fā)展空間觀念、推理能力以及概括問(wèn)題的能力,利用圓的旋轉(zhuǎn)不變性,研究圓心角、弧、弦之間相等關(guān)系定理.3.情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生積極探索數(shù)學(xué)問(wèn)題的態(tài)度及方法.教學(xué)重點(diǎn):圓心角、弧、弦之間關(guān)系定理教學(xué)
2024-12-01 04:14
【總結(jié)】圓的對(duì)稱性教學(xué)目標(biāo):(1)知識(shí)與能力:通過(guò)本課的學(xué)習(xí),學(xué)生在知識(shí)上要了解圓的對(duì)稱性及垂徑定理,在能力上要學(xué)會(huì)從表象中抽象出本質(zhì)規(guī)律,提高邏輯思維能力與推理能力。(2)過(guò)程與方法:在教學(xué)過(guò)程中,要讓學(xué)生親自動(dòng)手去做去體會(huì),并讓他們相互交流,然后根據(jù)實(shí)際情況加以啟發(fā),引導(dǎo)讓他們自己去總結(jié)出規(guī)律。(3)情感、態(tài)度與價(jià)值觀:A、本課
2024-11-19 08:37
【總結(jié)】第1題.若圓的半徑為3,圓中一條弦為25,則此弦中點(diǎn)到弦所對(duì)劣弧的中點(diǎn)的距離為.答案:1第2題.若AB是O的直徑,弦CDAB⊥于E,16AE?,4BE?,則CD?,AC?.答案:1685第3題.已知在O中,CD為直徑,AB是弦,ABCD⊥于M,15
2024-11-15 19:37
【總結(jié)】例3:⑴如圖,順次連結(jié)⊙O的兩條直徑AC和BD的端點(diǎn),所得的四邊形是什么特殊四邊形?ODCBA⑵如果要把直徑為30cm的圓柱形原木鋸成一根橫截面為正方形的木材,并使截面盡可能地大,應(yīng)怎樣鋸?最大橫截面面積是多少?⑶如果這根原木長(zhǎng)15m,問(wèn)鋸出地木材的體積為多少m3(樹皮等損耗略去不計(jì))?ODC
2024-11-12 18:26