【導(dǎo)讀】2.在數(shù)列2,9,23,44,72,…思路二:S2,S4-S2,S6-S4也成等差數(shù)列,則2=S6-S4+S2,所以S6=3S4-3S2. 4.?dāng)?shù)列{an}中,a1=1,對(duì)所有n≥2,都有a1a2a3…an=n2,則a3+a5=(). 解析由等差數(shù)列的性質(zhì)可知a2、a5、a8也成等差數(shù)列,故a5=a2+a82=6,故選C.解析依題意得an+1-an=lnn+1n,則有a2-a1=ln21,a3-a2=ln32,a4-a3=ln43,…an-an-1=lnnn-1,疊加得an-a1=ln(21·32·43·…·nn-1)=lnn,故an=2+lnn,選A.7.已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=Sn表示{an}的前n項(xiàng)和,解析∵a1+a3+a5=105,a2+a4+a6=99,∴3a3=105,3a4=99,即a3=35,a4=33.∴a1=39,d=-2,得an=41-2n.=-1<0,a7=1>0,故當(dāng)?shù)炔顢?shù)列{an}的前n項(xiàng)和Sn取得最小值時(shí),n等于6.18.(12分)等差數(shù)列{an}中,a4=10,且a3,a6,a10成等比數(shù)列,求數(shù)列{an}前20項(xiàng)的。于是S20=20a1+20×192d=20×7+190=330.