freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

山東省師大附中20xx-20xx學(xué)年高二下學(xué)期第八次學(xué)分認(rèn)定期末考試數(shù)學(xué)理試題-資料下載頁(yè)

2024-11-27 00:48本頁(yè)面

【導(dǎo)讀】在每小題給出的四個(gè)選項(xiàng)中,只有。一項(xiàng)是符合題目要求的。13.函數(shù)的最大值為___________.14.設(shè)等比數(shù)列滿足a1–a3=–3,則前4項(xiàng)的和=___________.15.已知函數(shù),曲線在點(diǎn)處的切線方程為___________.面是六邊形,則這個(gè)六邊形的的周長(zhǎng)為___________.17.△的內(nèi)角的對(duì)邊分別為,(Ⅱ)若PA=PD=AB=DC,,求二面角A?19.已知橢圓的短軸長(zhǎng)為,離心率為,點(diǎn),是上的動(dòng)點(diǎn),為的左焦點(diǎn).快遞滿意之間有關(guān)系‖?的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.(Ⅰ)求函數(shù)的單調(diào)區(qū)間和極值;(Ⅱ)恒成立,求實(shí)數(shù)的范圍.為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;(Ⅰ)求不等式的解集;

  

【正文】 根據(jù)已知條件完成下面的 列聯(lián)表,并回答能否有 99%認(rèn)為 ―網(wǎng)購(gòu)者對(duì)商品滿意與對(duì)快遞滿意之間有關(guān)系 ‖? 對(duì)快遞滿意 對(duì)快遞不滿意 合計(jì) 對(duì)商品滿意 80 對(duì)商品不滿意 合計(jì) 200 ( 2)若將頻率視為概率,某人在該網(wǎng)購(gòu)平臺(tái)上進(jìn)行的 3次購(gòu)物中,設(shè)對(duì)商品和快遞都滿意的次數(shù)為隨機(jī)變量 ,求 的分布列和數(shù)學(xué)期望 . 附: 【解析】試題分析: (1)由題意得 n=200,再由滿意率可求得 a,b,c,d 填入 列聯(lián)表,算卡方與數(shù)據(jù) 對(duì)比。( 2)由二項(xiàng)分布寫出布列及期 望。 試題解析 。( 1) 列聯(lián)表: 對(duì)快遞滿意 對(duì)快遞不滿意 合計(jì) 對(duì)商品滿意 對(duì)商品不滿意 合計(jì) , 由于 ,所以沒有 的把握認(rèn)為 ―網(wǎng)購(gòu)者對(duì)商品滿意與對(duì)快遞滿意之間有關(guān)系 ‖. ( 2)每次購(gòu)物時(shí),對(duì)商品和快遞都滿意的概率為 ,且 的取值可以是 , , , . ; ; ; . 的分布列為: 所以 . 21.(本題滿分 12分) 設(shè)函數(shù) 求函數(shù) 的單調(diào)區(qū)間和極值 恒成立,求實(shí)數(shù) 的范圍 解析:( 1) , 函數(shù) 的減區(qū)間為 ,增區(qū)間為 ( 2) , , (二)選考題:共 10 分 .請(qǐng)考生在第 2 23 題中任選一題作答 .如果多做,則按所做的第一題計(jì)分 . 22. [選修 4?4:坐標(biāo)系與參數(shù)方程 ]( 10分) 在直角坐標(biāo)系中 中,曲線 的參數(shù)方程為 為參數(shù), ) . 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知直線 的極坐標(biāo)方程為 . ( 1)求曲線 C的普通方程和直線的直角坐標(biāo)方程 (2)設(shè) 是曲線 上的一個(gè)動(dòng)點(diǎn),當(dāng) 時(shí),求點(diǎn) 到直線 的距離的最大值; 23. [選修 4—5:不等 式選講 ]( 10分) 已知函數(shù) , . ( 1)求不等式 的解集; ( 2)若方程 有三個(gè)實(shí)數(shù)根,求實(shí)數(shù) 的取值范圍 . (1)由 ,得 ,化成直角坐標(biāo)方程,得,即直線 的方程為 , 為參數(shù), ) 消去參數(shù)得曲線 C的普通方程為: ( 2 )依題意,設(shè) ,則 到直線 的距離,當(dāng) ,即 時(shí), ,故點(diǎn) 到直線 的距離的最大值為 . 23.( 1)原不等式等價(jià)于 或 或 , 得 或 ∴ 不等式 的 解集為 . ( 2)由方程 可變形為 , 令 ,作出圖象如下: 于是由題意可得 .
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1