【導(dǎo)讀】三角函數(shù)是描述周期運(yùn)動(dòng)現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用.三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直。教材的重點(diǎn)就是定義本身.實(shí)的基礎(chǔ),新課的引入會(huì)比較容易和順暢。通過這個(gè)問題,讓學(xué)生體會(huì)到新知識(shí)的發(fā)生是可能的,自然的。主體參與、揭示本質(zhì)、經(jīng)歷過程.映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).三種函數(shù)的值在各象限的符號(hào).借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù).加深特殊與一般關(guān)系的理解。通過學(xué)生積極參與知識(shí)的“發(fā)現(xiàn)”與“形成”的過程,培養(yǎng)合情猜測(cè)。函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).弦、正切等三個(gè)三角函數(shù).請(qǐng)回想:這三個(gè)三角函數(shù)分別是怎樣規(guī)定的?銳角三角函數(shù)的復(fù)習(xí)就必不可少.的三角函數(shù)值的求法,我們應(yīng)如何求解任意角的三。是一個(gè)任意角,它的終邊與單位圓交于點(diǎn)