【導讀】中項a,A,b成等差數(shù)列?q≠1時,Sn=a1?若m+n=p+q,則am+an=ap+aq若m+n=p+q,則am·an=ap·aq. d=0{an}是常數(shù)列?Sm、S2m-Sm、S3m-S2m成等差數(shù)列Sm,S2m-Sm,S3m-S2m成等比數(shù)列。若{an},{bn}成等差數(shù)列,則{an+bn},an+2n+1,a1=an.,則bn+1=bn+????∴bn=b1+++…例2在數(shù)列{an}中,an+1=3a2n,a1=an.解由已知,an>0,對an+1=3a2n兩邊取常用對數(shù)得:lgan+1=2lgan+lg3.令bn=lgbn+1=2bn+lg3.∴{bn+lg3}是等比數(shù)列,∴bn+lg3=2n-1·=2nlg3.設bn=an·log2an,求數(shù)列{bn}的前n項和Tn.∵bn=anlog2an=(n+1)·2n+1,2Tn=2·23+3·24+4·25+…解設數(shù)列{an}的公差為d,由a3,a6,a10成等比數(shù)列得a3a10=a26,當d=1時,a1=a4-3d=10-3×1=7.∴S20=20a1+20×192d=20×7+190=330.例6已知數(shù)列{an}和{bn}滿足a1=m,an+1=λan+n,bn=an-2n3+49.當m=1時,求證:對于任意的實數(shù)λ,數(shù)列{an}一定不是等差數(shù)列;證明當m=1時,假設數(shù)列{an}是等差數(shù)列,由a1+a3=2a2,得λ2+λ+3=2(λ+1),