【導(dǎo)讀】設(shè)nS為等差數(shù)列{}na的前n項(xiàng)和,若33,S?數(shù)列{}na的前n項(xiàng)和21nSn??學(xué)法指導(dǎo):可以把數(shù)列的首項(xiàng)1a和公差d設(shè)出來(lái),由已知條件算出它們,本節(jié)課有哪些收獲?請(qǐng)寫(xiě)下來(lái),與組內(nèi)的同學(xué)分享。
【總結(jié)】等差數(shù)列的前n項(xiàng)和(一)自主學(xué)習(xí)知識(shí)梳理1.把a(bǔ)1+a2+?+an叫數(shù)列{an}的前n項(xiàng)和,記做________.例如a1+a2+?+a16可以記做________;a1+a2+a3+?+an-1=________(n≥2).2.若{an}是等差數(shù)列,則Sn可以用首項(xiàng)a1和末
2024-11-19 23:20
【總結(jié)】課題:等差數(shù)列的通項(xiàng)公式班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】:1、會(huì)用“疊加法”求等差數(shù)列通項(xiàng)公式;2、會(huì)用等差數(shù)列通項(xiàng)公式解決一些簡(jiǎn)單問(wèn)題?!菊n前預(yù)習(xí)】??na,4,7,10,13,16,?,則100a=,猜想na=
2024-11-20 01:05
【總結(jié)】等差數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和的性質(zhì),并能靈活運(yùn)用.n項(xiàng)和的最值問(wèn)題.an與Sn的關(guān)系,能根據(jù)Sn求an.1.前n項(xiàng)和Sn與an之間的關(guān)系對(duì)任意數(shù)列{an},Sn是前n項(xiàng)和,Sn與an的關(guān)系可以表示為an=?????n=,n2.
2024-12-05 10:14
【總結(jié)】2.等差數(shù)列的前n項(xiàng)和1.(1)對(duì)于任意數(shù)列{an},Sn=a1+a2+a3+?+an,叫做數(shù)列{an}的前n項(xiàng)的和.(2)Sn-Sn-1=an(n≥2),a1=S1(n=1).2.(1)等差數(shù)列{an}的前n項(xiàng)和公式為Sn=n(a1+an)2或Sn=na1+n(n-1)d2.(2)
2024-12-08 13:12
【總結(jié)】等差數(shù)列的前n項(xiàng)和(2)教學(xué)目標(biāo):1.進(jìn)一步熟練掌握等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式.2.了解等差數(shù)列的一些性質(zhì),并會(huì)用它們解決一些相關(guān)問(wèn)題.教學(xué)重點(diǎn):熟練掌握等差數(shù)列的求和公式.教學(xué)難點(diǎn):靈活應(yīng)用求和公式解決問(wèn)題.教學(xué)方法:?jiǎn)l(fā)、討論、引導(dǎo)式.教學(xué)過(guò)程:一、問(wèn)題情境
【總結(jié)】2.等差數(shù)列的前n項(xiàng)和學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入數(shù)學(xué)史上有一顆光芒四射的巨星,他與阿基米德、牛頓齊名,被稱(chēng)為歷史上最偉大的三位數(shù)學(xué)家之一,他就是18世紀(jì)德國(guó)著名的數(shù)學(xué)家——高斯.高斯在上小學(xué)時(shí),就能很快地算出1+2+3+…+1
2024-11-17 23:16
【總結(jié)】等差數(shù)列前n項(xiàng)和公式的應(yīng)用等差數(shù)列的前n項(xiàng)和公式是一個(gè)很重要的公式.對(duì)這個(gè)公式的形式和本質(zhì)特征的研究,將有助于提高我們的計(jì)算能力和分析、解決問(wèn)題的能力.一、分析公式的結(jié)構(gòu)特征難得出下面的結(jié)論:中間項(xiàng).2.當(dāng)n是偶數(shù)時(shí),a1與an的等差中項(xiàng)不是該數(shù)列的項(xiàng),它的值等于數(shù)列
2024-12-03 03:12
【總結(jié)】第7課時(shí)等比數(shù)列的前n項(xiàng)和n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決有關(guān)等比數(shù)列的問(wèn)題..印度的舍罕王打算獎(jiǎng)賞發(fā)明國(guó)際象棋的大臣西薩·班·達(dá)依爾,并問(wèn)他想得到什么樣的獎(jiǎng)賞.大臣說(shuō):“陛下,請(qǐng)您在這張棋盤(pán)的第一個(gè)小格內(nèi)賞給我一粒麥子,在第二個(gè)小格內(nèi)給兩粒,在第三個(gè)小格
2024-12-08 02:37
【總結(jié)】課題:等差數(shù)列的概念班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握等差數(shù)列的概念;2、能夠利用等差數(shù)列的定義判斷給定數(shù)列是否為等差數(shù)列【課前預(yù)習(xí)】1、上節(jié)課我們學(xué)習(xí)了數(shù)列的定義及通項(xiàng)公式,那么什么叫數(shù)列?什么叫??na的通項(xiàng)公式)?2、①德國(guó)數(shù)
【總結(jié)】?2.2等差數(shù)列的前n項(xiàng)和?一、等差數(shù)列{an}的前n項(xiàng)和公式?一般地,我們稱(chēng)a1+a2+a3+…+an為數(shù)列{an}的前n項(xiàng)和,用Sn表示,即Sn=①________.?對(duì)于等差數(shù)列{an}來(lái)說(shuō),設(shè)其首項(xiàng)為a1,末項(xiàng)為an,項(xiàng)數(shù)為n,由倒序相加法可知其前n項(xiàng)和Sn=②:等差數(shù)列前n項(xiàng)和
2024-11-17 17:38
【總結(jié)】等差數(shù)列的前n項(xiàng)和A組基礎(chǔ)鞏固1.在等差數(shù)列{an}中,S10=120,則a2+a9=()A.12B.24C.36D.48解析:S10=a1+a102=5(a2+a9)=120.∴a2+a9=24.答案:B2.設(shè)數(shù)列{an}是等差數(shù)列,且a2=-6,a8=6,Sn是
2024-12-08 20:22
【總結(jié)】等差數(shù)列的前n項(xiàng)和一、教材分析1.教學(xué)內(nèi)容:本節(jié)課是高中人教A版必修5第二章第三節(jié)第一課時(shí)的內(nèi)容。主要研究等差數(shù)列的前n項(xiàng)和公式的推導(dǎo)及其簡(jiǎn)單應(yīng)用。2.地位與作用本節(jié)課是前面所學(xué)知識(shí)的延續(xù)和深化,又是后面學(xué)習(xí)“等比數(shù)列及其前n項(xiàng)和”的基礎(chǔ)和前奏。學(xué)好了本節(jié)課的內(nèi)容,既能加深對(duì)數(shù)列有關(guān)概念的理解,又能為后面學(xué)好等比數(shù)列及數(shù)列求和
【總結(jié)】等差數(shù)列的前n項(xiàng)和理解教材新知突破??碱}型跨越高分障礙第二章題型一題型二應(yīng)用落實(shí)體驗(yàn)隨堂即時(shí)演練課時(shí)達(dá)標(biāo)檢測(cè)題型三知識(shí)點(diǎn)一知識(shí)點(diǎn)二題型四[導(dǎo)入新知]數(shù)列的前n項(xiàng)和對(duì)于數(shù)列{an},一般地稱(chēng)
2024-11-17 17:05
【總結(jié)】等差數(shù)列的前n項(xiàng)和一.新課引入一個(gè)堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支。這個(gè)V形架上共放著多少支鉛筆?問(wèn)題就是“”?1004321???????這是小學(xué)時(shí)就知道的一個(gè)故事,高斯的算法非常高明,回憶他是怎樣算的?
2024-11-17 19:18
【總結(jié)】等差數(shù)列的前n項(xiàng)和高一數(shù)學(xué)必修五第二章《數(shù)列》復(fù)習(xí)鞏固1.an=am+(n-m)d,在等差數(shù)列{an}中,mnpqaaaa????m+n=p+qa1+an=a2+an-1=a3+an-2=….例題講解例1在等差數(shù)列{an}中
2025-08-01 13:48