【導(dǎo)讀】3.用向量證明平面幾何、解析幾何問題的步驟。4.體會向量在解決問題中的應(yīng)用,培養(yǎng)運算及解決問題的能力。例,已知平行四邊形ABCD、E、E在對角線BD上,并且=BEFD.變式:求通過A(2,1),且與直線:4390lxy???平行的直線方程。
【總結(jié)】一、選擇題1.用力F推動一物體水平運動sm,設(shè)F與水平面的夾角為θ,則力F對物體所做的功為()A.|F|·sB.F·cosθ·sC.F·sinθ·sD.|F|·cosθ·s【解析】W=F·s=|F|·|s|
2024-11-28 01:12
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo),會進(jìn)行平面向量數(shù)量積的坐標(biāo)運算。。學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材112頁~114頁,找出疑惑之處)二、新課導(dǎo)學(xué)1.向量內(nèi)積的坐標(biāo)運算已知兩個非零向量????1122a=x,y,b=x,y,ab=?(坐標(biāo)形式)。:
2024-11-18 16:44
【總結(jié)】§應(yīng)用舉例(一)自主學(xué)習(xí)知識梳理1.實際問題中的常用角(1)仰角和俯角在視線和水平線所成的角中,視線在水平線________的角叫仰角,在水平線________的角叫俯角(如圖①).(2)方位角指從正北方向________轉(zhuǎn)到目標(biāo)方向線的水平角,如B點的方位角為α(如圖②)
2024-11-19 23:20
【總結(jié)】(6)正弦型函數(shù)y=Asin(ωx+φ)的性質(zhì)(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.y=sinx所有點的縱坐標(biāo)___________(當(dāng)A1時)或__________(當(dāng)0A1)到原來的A倍(橫坐標(biāo)不變)而得到的函數(shù)ARxxAy(,sin??
2024-11-18 16:45
【總結(jié)】§向量的減法(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、如果把兩個向量的始點放在一起,則這兩個向量的差是以為起點,為終點的向量。2、一個向量BA等于它的終點相對于點O的位置向量___減去它的始點相對于點O的位置向量___,或簡記為
【總結(jié)】自學(xué)目標(biāo)1、掌握平行向量基本定理;2、掌握軸上向量的座標(biāo)及其運算。學(xué)習(xí)過程[來源:.Com]一、課前準(zhǔn)備(預(yù)習(xí)教材77頁~79頁,找出疑惑之處)二、新課導(dǎo)學(xué)1、向量共線的條件2、平行向量基本定理:3、單位向量:4、軸上向量的座標(biāo)及其運算:①已知軸l,取單位向
2024-11-27 23:46
【總結(jié)】誘導(dǎo)公式(一)崔文一、學(xué)習(xí)目標(biāo):1.了解三角函數(shù)的誘導(dǎo)公式的意義和作用.2.理解誘導(dǎo)公式的推導(dǎo)過程.3.能運用有關(guān)誘導(dǎo)公式解決一些三角函數(shù)的求值、化簡和證明問題.二、重點與難點:重點:誘導(dǎo)公式的記憶、理解、運用。難點:誘導(dǎo)公式的推導(dǎo)、記憶及符號的判斷;三、自學(xué)檢測誘導(dǎo)公式一~三(1)公式一:s
2024-11-27 23:50
【總結(jié)】§平面向量數(shù)量積的運算律(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.交換律:a?b=;2.?dāng)?shù)乘結(jié)合律:(?a)?b==;3.分配律:(a+b)?c=.說明
2024-11-27 23:43
【總結(jié)】§正弦函數(shù)的性質(zhì)(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.請根據(jù)正弦函數(shù)圖象sinyx?的定義域是______;值域是______;當(dāng)x?______________時,maxy?____;當(dāng)x=________________時,miny?
2024-11-18 16:46
【總結(jié)】平面向量基本定理一.學(xué)習(xí)要點:向量基本定理及其簡單應(yīng)用二.學(xué)習(xí)過程:(一)復(fù)習(xí):1向量的加法運算;2向量共線定理;(二)新課學(xué)習(xí):1.平面向量基本定理:如果1e,2e是同一平面內(nèi)的兩個向量,那么對于這一平面內(nèi)的任一向量a,
【總結(jié)】誘導(dǎo)公式(二)崔文一、學(xué)習(xí)目標(biāo)1.掌握誘導(dǎo)公式四、五的推導(dǎo),并能應(yīng)用解決簡單的求值、化簡與證明問題.2.對誘導(dǎo)公式一至五,能作綜合歸納,體會出五組公式的共性與個性,培養(yǎng)由特殊到一般的數(shù)學(xué)推理意識和能力.3.繼續(xù)體會知識的“發(fā)生”、“發(fā)現(xiàn)”過程,培養(yǎng)研究問題、發(fā)現(xiàn)問題、解決問題的能力.二、學(xué)習(xí)指導(dǎo)五組誘導(dǎo)公式可以概括為一
【總結(jié)】2.3.2向量數(shù)量積的運算律一、學(xué)習(xí)要點:向量數(shù)量積的運算律及其簡單運用二、學(xué)習(xí)過程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的定義及其幾何意義、性質(zhì):二.新課學(xué)習(xí)::(1)(2)(3)
【總結(jié)】§(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)sin2?=sin(?+?)=cos2?=cos(?+?)==cos2?-sin2?==tan
2024-11-27 23:35
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1、理解平面向量的正交分解。聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運算。2、會用坐標(biāo)表示平面向量的加法、減與數(shù)乘運算。學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材99頁~102頁,找出疑惑之處)二、新課導(dǎo)學(xué)(一)向量的正交分解1、如果兩個向量的基線互相垂直,則稱這兩個向量,
【總結(jié)】弧度制(1)學(xué)習(xí)要點:弧度制以及角度制與之換算關(guān)系。學(xué)習(xí)過程:(一)復(fù)習(xí):度量角的大小第一種單位制—角度制的定義。(二)新課學(xué)習(xí):1.1弧度角的定義:長度等于的弧所對的圓心角稱為的角。如圖:?AOB=1rad