【導(dǎo)讀】、線面、面面的夾角的計(jì)算問題.使它們轉(zhuǎn)化為兩條相交直線,然后通過解三角形獲解.量n1與向量n2的夾角就是二面角的平面角的大小.范圍:兩條異面直線所成角θ的取值范圍是0<θ≤.則a,b所成角的余弦值為cosθ=|cosφ|=.sinθ=|cosφ|=戒cosθ=sinφ.空間直角坐標(biāo)系,例2已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為,M為A1B1的中點(diǎn),求BC1與平面AMC1所成角的正弦值.為單位正交基底,因?yàn)椤鱀BA1和△BDC1都是正三角形,所以A1E⊥BD,C1E⊥BD,