freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx高中數(shù)學北師大版必修5第3章4簡單線性規(guī)劃第3課時簡單線性規(guī)劃的應用ppt同步課件-資料下載頁

2024-11-17 03:38本頁面

【導讀】第3課時簡單線性規(guī)劃的應用。易混易錯點睛3課時作業(yè)5. 近20年來,中國的城市化取得了巨大。的成就.城市人口急劇增加,導致購房者大。大增長.與裝修有關的各個行業(yè)發(fā)展迅。速.某家具加工廠為了滿足人們的需求,準。備加工書桌和書櫥出售.家具廠現(xiàn)有方木。①________——畫出約束條件所確定的平面區(qū)域和目標函數(shù)。所表示的平面直線系中的任意一條直線l.②________——將l平行移動,以確定最優(yōu)解所對應的點的。③________——解有關方程組求出最優(yōu)解的坐標,再代入目。2.線性規(guī)劃解決的常見問題有:___________問題、產(chǎn)品安排合理下料產(chǎn)品配方。潤3萬元,該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B. 2.醫(yī)院用甲、乙兩種原料為手術后的病人配營養(yǎng)餐,甲。種原料每10g含5單位蛋白質(zhì)和10單位鐵質(zhì),售價3元;乙種原。料每10g含7單位蛋白質(zhì)和4單位鐵質(zhì),售價2元,若病人每餐至。少需要35單位蛋白質(zhì)和40單位鐵質(zhì),既滿足營養(yǎng),又使費用最。甲、乙兩車間耗費工時總和不得超過480小時,甲、乙兩車間

  

【正文】 點 ” 不是整點或不包括邊界時 , 一般采用網(wǎng)格法 , 即先在可行域內(nèi)打網(wǎng)格 、 描整點 、 平移直線 l、 最先經(jīng)過或最后經(jīng)過的整點坐標是整數(shù)最優(yōu)解 . 這種方法依賴作圖 , 所以作圖應盡可能精確 , 圖上操作盡可能規(guī)范 . (3)采用優(yōu)值調(diào)整法 , 此法的一般步驟為: ① 先求出非整點最優(yōu)解及其相應的最優(yōu)值; ② 調(diào)整最優(yōu)值 , 代入約束條件 , 解不等式組; ③ 根據(jù)不等式組的解篩選出整點最優(yōu)解 . 某公司計劃在今年內(nèi)同時出售電子琴和洗衣機 , 由于兩種產(chǎn)品的市場需求量非常大 , 有多少就能銷售多少 , 因此該公司要根據(jù)實際情況 (如資金 、 勞動力 )確定產(chǎn)品的月供應量 , 以使得總利潤達到最大 . 已知對這兩種產(chǎn)品有直接限制的因素是資金和勞動力 , 通過調(diào)查 , 得到關于這兩種產(chǎn)品的有關數(shù)據(jù)如下表: 資金 單位產(chǎn)品所需資金 (百元 ) 月資金供應 量 (百元 ) 電子琴 (架 ) 洗衣機 (臺 ) 成本 30 20 300 勞動力 (工資 ) 5 10 110 單位利潤 6 8 試問:怎樣確定兩種貨物的供應量 , 才能使總利潤達到最大 , 最大利潤是多少 ? [ 解析 ] 設電子琴和洗衣機月供應量分別為 x 架、 y 臺,總利潤為 z 百元, 則根據(jù)題意,有????????? x ≥ 0 ,y ≥ 0 ,30 x + 20 y ≤ 300 ,5 x + 1 0 y ≥ 100 ,x , y ∈ N , 且 z = 6 x + 8 y , 作出以上不等式組所表示的平面區(qū)域,如圖中所示的陰影部分 令 z = 0 ,作直線 l : 6 x + 8 y = 0 ,即 3 x + 4 y = 0. 當移動直線 l 過圖中的 A 點時, z = 6 x + 8 y 取得最大值. 解方程組????? 30 x + 20 y = 300 ,5 x + 10 y = 1 10 ,得 A (4,9) , 代入 z = 6 x + 8 y 得 zm ax= 6 4 + 8 9 = 96. 所以當供應量為電子琴 4 架、洗衣機 9 臺時,公司可獲得最大利潤,最大利潤是 96 百元. 易混易錯點睛 已知一元二次方程 x2+ ax + b = 0 的一個根在- 2與- 1 之間,另一個根在 1 與 2 之間,如圖示以 a , b 為坐標的點 ( a , b ) 的存在范圍.并求 a + b 的取值范圍. [ 誤解 ] 令 f ( x ) = x2+ ax + b . 由題設 ??????? f ? - 2 ? > 0f ? - 1 ? < 0f ? 1 ? < 0f ? 2 ? > 0, ∴??????? 2 a - b - 4 < 0a - b - 1 > 0a + b + 1 < 02 a + b + 4 > 0 , 作出平面區(qū)域如圖 . 令 t= a+ b, 則 t是直線 b=- a+ t的縱截距 , 顯然當直線 b=- a+ t與直線 a+ b+ 1= 0重合時 , t最大 , tmax=- 1. 當直線 b=- a+ t經(jīng)過點 (0, - 4)時 . t最小 , ∴ tmin=- 4,∴ - 4≤t≤- 1. [辨析 ] 誤解中忽視了點 (a, b)的存在范圍不包含邊界 . [ 正解 ] 令 f ( x ) = x2+ ax + b . 由題設 ??????? f ? - 2 ? > 0f ? - 1 ? < 0f ? 1 ? < 0f ? 2 ? > 0, ∴??????? 2 a - b - 4 < 0a - b - 1 > 0a + b + 1 < 02 a + b + 4 > 0 , 作出平面區(qū)域如圖 . 令 t= a+ b, 則 t是直線 b=- a+ t的縱截距 , 顯然當直線 b=- a+ t與直線 a+ b+ 1= 0重合時 , t最大 , tmax=- 1. 當直線 b=- a+ t經(jīng)過點 (0, - 4)時 . t最小 , ∴ tmin=- 4, 又 ∵ 點 (a, b)的范圍是如圖陰影部分且不含邊界 , ∴ - 4t- - 4a+ b- 1. 本節(jié)思維導圖 線性規(guī)劃的應用 ??????????? 轉化 —設出未知數(shù),寫出約束條件與目標函數(shù),將實際應用問題轉化為數(shù)學上的線性規(guī)劃問題 ↓求解 — 解這個線性規(guī)劃問題 ↓作答 — 根據(jù)應用題提出的問題作答
點擊復制文檔內(nèi)容
教學課件相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1