【導(dǎo)讀】①{an}是等比數(shù)列?2則的等比中項(xiàng)與是。例3:已知{an}、{bn}是項(xiàng)數(shù)相同的等比數(shù)列,求證:{an·bn}是等比數(shù)列.則{an+bn}是等比數(shù)列嗎?{c·an}是等比數(shù)列嗎?
【總結(jié)】人民教育出版社高中《數(shù)學(xué)》第一冊(cè)(上)第三章等比數(shù)列前n項(xiàng)和公式教師:武占斌山西大同市第二中學(xué)校說(shuō)課的四個(gè)環(huán)節(jié)?教材分析?教法選取?學(xué)法指導(dǎo)?教學(xué)程序一、教材分析1、教材背景分析:等比數(shù)列的前n項(xiàng)和等差數(shù)列等比數(shù)列通項(xiàng)、遞推公式求和數(shù)列
2025-05-10 08:13
【總結(jié)】等比數(shù)列的定義:一、知識(shí)回顧:1qaann??1通項(xiàng)公式:211??nnqaa等比中項(xiàng):3abGabGbGa?????2成等比,,1+2+22+23+24+…+263=?:二、等比數(shù)列求和公式對(duì)①、②進(jìn)行比較.S64=1+2+4+8+…+262+263①2S64=2+4+8+16
2025-08-16 01:49
【總結(jié)】等比數(shù)列的概念(二)等比數(shù)列的通項(xiàng)公式(二)課時(shí)目標(biāo).,能用性質(zhì)靈活解決問(wèn)題.1.一般地,如果m,n,k,l為正整數(shù),且m+n=k+l,則有______________,特別地,當(dāng)m+n=2k時(shí),am·an=________.2.在等比數(shù)列{an}中,每隔k項(xiàng)(
2024-12-05 10:14
【總結(jié)】等比數(shù)列及其性質(zhì)期末復(fù)習(xí)?????是等比數(shù)列若重要結(jié)論:項(xiàng)和公式前推廣:通項(xiàng)公式:為等比數(shù)列、定義:}{.4:.3_________________}{1nnnnnaSnaaa一、知識(shí)要點(diǎn):1nnaa??常數(shù)(2),q
2024-11-09 01:53
【總結(jié)】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第4課時(shí)等差、等比數(shù)列的應(yīng)用要點(diǎn)·疑點(diǎn)·考點(diǎn)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,存期為
2024-11-12 16:42
【總結(jié)】?要點(diǎn)183。疑點(diǎn)183??键c(diǎn)?課前熱身?能力183。思維183。方法?延伸183。拓展?誤解分析第2課時(shí)等差、等比數(shù)列的通項(xiàng)及求和公式要點(diǎn)183。疑點(diǎn)183??键c(diǎn)(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S(k-1)n…成等差(
【總結(jié)】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時(shí)等差、等比數(shù)列的通項(xiàng)及求和公式要點(diǎn)·疑點(diǎn)·考點(diǎn)(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2025-08-05 21:12
【總結(jié)】復(fù)習(xí):等比數(shù)列{an}an+1an=q(定值)(1)等比數(shù)列:(2)通項(xiàng)公式:an=a1?qn-1(4)重要性質(zhì):n-man=am?qm+n=p+qan?aq?am=ap注:以上m,n,p,q均為自然數(shù)成等比數(shù)列(3)bGa,,)0(,2??ababG
【總結(jié)】等比數(shù)列的概念(一)等比數(shù)列的通項(xiàng)公式(一)課時(shí)目標(biāo),能夠利用定義判斷一個(gè)數(shù)列是否為等比數(shù)列.2.掌握等比數(shù)列的通項(xiàng)公式并能簡(jiǎn)單應(yīng)用.,能夠應(yīng)用等比中項(xiàng)的定義解決有關(guān)問(wèn)題.1.如果一個(gè)數(shù)列從第____項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的____都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的___
【總結(jié)】等差數(shù)列和等比數(shù)列的應(yīng)用復(fù)習(xí)一、課堂練習(xí):?????????8276543aaaaaaaan則,中,若等差數(shù)列.,則,,,,五項(xiàng)分別為:在等比數(shù)列中,有連續(xù)12cbab=a=c=ac=;?
2024-11-09 01:17
【總結(jié)】1“一尺之棰,日取其半,萬(wàn)世不竭。”無(wú)窮等比數(shù)列各項(xiàng)和的概念無(wú)窮等比數(shù)列各項(xiàng)和的概念1證明:無(wú)窮等比數(shù)列各項(xiàng)和的概念證明:無(wú)窮等比數(shù)列各項(xiàng)和的概念公式:無(wú)窮等比數(shù)列各項(xiàng)和的概念無(wú)窮等比數(shù)列各項(xiàng)和的應(yīng)用應(yīng)用:發(fā)現(xiàn)四:化循環(huán)小數(shù)為分?jǐn)?shù)的一般方法:
2024-11-12 19:04
【總結(jié)】等比數(shù)列的前n項(xiàng)和(第一課時(shí))等比數(shù)列的前n項(xiàng)和等比數(shù)列的前項(xiàng)和一、教材分析二、目標(biāo)分析三、過(guò)程分析四、教法分析五、評(píng)價(jià)分析一、教材分析一、教材分析1.從在教材中的地位與作用來(lái)看《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,
2024-11-09 12:46
【總結(jié)】等比數(shù)列的前n項(xiàng)和(二)復(fù)習(xí)引入1.等比數(shù)列求和公式復(fù)習(xí)引入1.等比數(shù)列求和公式??????????)1(1)1()1(11qqqaqnaSnn復(fù)習(xí)引入1.等比數(shù)列求和公式?????????
2025-07-21 04:14
【總結(jié)】
2024-11-12 17:10
【總結(jié)】等比數(shù)列1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復(fù)利,5年內(nèi)各年末本利和分別是10000(1+),10000(1+)2,10000(1+)3,1
2025-07-21 17:18