【總結(jié)】利用空間向量解決空間中的“夾角”問(wèn)題學(xué)習(xí)目標(biāo):、直線(xiàn)與平面所成的角、二面角的向量方法;;。重點(diǎn):利用空間向量解決空間中的“夾角”難點(diǎn):向量夾角與空間中的“夾角”的關(guān)系一、復(fù)習(xí)引入1.用空間向量解決立體幾何問(wèn)題的“三步曲”(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線(xiàn)、平面,把立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(化為向量問(wèn)題
2025-06-07 21:15
【總結(jié)】空間向量運(yùn)算的坐標(biāo)表示(二)O?xyz??,,ijk為單位正交基底以建立空間直角坐標(biāo)系O—xyz(,,)xyzpxiyjzk?????,,ijk為基
2025-10-31 03:12
【總結(jié)】課前探究學(xué)習(xí)課堂講練互動(dòng)活頁(yè)規(guī)范訓(xùn)練【課標(biāo)要求】第3課時(shí)空間向量與空間角【核心掃描】理解直線(xiàn)與平面所成角的概念.能夠利用向量方法解決線(xiàn)線(xiàn)、線(xiàn)面、面面的夾角問(wèn)題.體會(huì)用空間向量解決立體幾何問(wèn)題的三步曲.向量法求解線(xiàn)線(xiàn)、線(xiàn)面、面面的夾角.(重點(diǎn))線(xiàn)線(xiàn)、線(xiàn)面、面面的夾角與向量的應(yīng)用.(難點(diǎn)
2025-01-15 06:07
【總結(jié)】1上杭縣高級(jí)中學(xué)講課人:周文才時(shí)間:07年12月14日2345678所以:解:以點(diǎn)C為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系如圖所示,設(shè)則C||所以與所成角的余弦值為9設(shè)平面xyz點(diǎn)評(píng):找到
2025-11-03 16:42
【總結(jié)】利用空間向量解立體幾何問(wèn)題2、例2已知三角形的頂點(diǎn)是,,,試求這個(gè)三角形的面積。分析:可用公式來(lái)求面積解:∵,,∴,,,∴,∴所以,.1、綜述(1)由于任意兩個(gè)空間向量都可以轉(zhuǎn)化為平面向量,所以空間兩個(gè)向量的夾角的定義和取值范圍、兩個(gè)向量垂直的定義和符號(hào)、兩個(gè)空間向量的數(shù)量積等等,都與平面向量相同。(2)利用空間向量解題的方法有2類(lèi):(i)利
2025-06-07 16:39
【總結(jié)】空間向量的正交分解及其坐標(biāo)表示一、空間直角坐標(biāo)系單位正交基底:如果空間的一個(gè)基底的三個(gè)基向量互相垂直,且長(zhǎng)都為1,則這個(gè)基底叫做單位正交基底,常用來(lái)I,j,k表示空間直角坐標(biāo)系:在空間選定一點(diǎn)O和一個(gè)單位正交基底i、j、k。以點(diǎn)O為原點(diǎn),分別以i、j、
2025-11-09 07:54
【總結(jié)】2020年12月16日星期三---角的向量計(jì)算方法如圖,在正方體中,,求與所成的角的余弦值.1111?ABCDABCD11?BE111114???ABDF1BE1DFF1E1C1B1A1D1DABCxyz
2025-10-31 03:30
【總結(jié)】利用空間向量解決立體幾何問(wèn)題數(shù)學(xué)專(zhuān)題二學(xué)習(xí)提綱二、立體幾何問(wèn)題的類(lèi)型及解法1、判斷直線(xiàn)、平面間的位置關(guān)系;(1)直線(xiàn)與直線(xiàn)的位置關(guān)系;(2)直線(xiàn)與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線(xiàn)的方向向量;2、平面的法向量。
2025-11-16 22:52
【總結(jié)】復(fù)習(xí)回顧:平面向量1、定義:既有大小又有方向的量。幾何表示法:相等向量:長(zhǎng)度相等且方向相同的向量AB用小寫(xiě)字母表示,或者用表示向量的有向線(xiàn)段的起點(diǎn)和終點(diǎn)字母表示。aCD用有向線(xiàn)段表示字母表示法:2、平面向量的加法、減法與數(shù)乘運(yùn)算向量加法的三角形法則ab向
2025-10-31 08:13
【總結(jié)】?1.相反向量?我們規(guī)定,與a長(zhǎng)度,方向的向量,叫做a的相反向量,記作-a,零向量的相反向量仍是.?關(guān)于相反向量有以下結(jié)論?①-(-a)=;?②a+(-a)=(-a)+a=;?③若a、b是互為相反的向量,則b=-a,a+b
2025-11-03 16:45
【總結(jié)】主講老師:共線(xiàn)向量復(fù)習(xí)引入(1)數(shù)量與向量有何區(qū)別?(2)如何表示向量?(3)有向線(xiàn)段和線(xiàn)段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?(4)長(zhǎng)度為零的向量叫什么向量?長(zhǎng)度為1的向量叫什么向量?講授新課(5)滿(mǎn)足什么條件的兩個(gè)向量是相同向量?單位向量是相同向量嗎?
2025-10-31 01:24
【總結(jié)】αlPAB直線(xiàn)與直線(xiàn)所成角的范圍:結(jié)論:|cos,|??ab?||一、線(xiàn)線(xiàn)角:??ab??????,ab????????,設(shè)直線(xiàn)的方向向量為,的方向向量為CAaBbDaabb]2,0[?回顧線(xiàn)線(xiàn)夾角與兩線(xiàn)方向向量間的關(guān)系
2025-08-05 09:41
【總結(jié)】一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2025-11-08 13:01
【總結(jié)】空間向量在立體幾何中的應(yīng)用5前段時(shí)間我們研究了用空間向量求角(包括線(xiàn)線(xiàn)角、線(xiàn)面角和面面角)、求距離(包括線(xiàn)線(xiàn)距離、點(diǎn)面距離、線(xiàn)面距離和面面距離)今天我來(lái)研究如何利用空間向量來(lái)解決立體幾何中的有關(guān)證明及計(jì)算問(wèn)題。一、空間向量的運(yùn)算及其坐標(biāo)運(yùn)算的掌握二、立體
2025-01-08 14:05
【總結(jié)】專(zhuān)題五:平面向量專(zhuān)題備考指導(dǎo)及考情分析:平面向量是高中數(shù)學(xué)的重要內(nèi)容,它是銜接代數(shù)與幾何的橋梁和紐帶,向量、向量法在其他章節(jié)內(nèi)容中的穿插、滲透和融合,是高考數(shù)學(xué)試題中的一道靚麗的風(fēng)景,綜觀(guān)2022年全國(guó)各地高考試卷,對(duì)平面向量的考查主要包括以下三個(gè)層次:(1)考查平面向量的性質(zhì)和運(yùn)算法則,以及基本運(yùn)算技能;(2)考查向
2025-08-16 02:00