【總結(jié)】第1頁小波變換在信號處理中的應(yīng)用一、從傅里葉變換到小波變換二、連續(xù)小波變換三、一維離散小波變換與重構(gòu)四、二維離散小波變換與重構(gòu)五、Matlab中的小波分析工具箱第2頁小波分析是近15年來發(fā)展起來的一種新的時頻分析方法,我們可以先粗略地區(qū)分一下時域分析和頻域分析。時域分析的基本目標:-
2025-04-29 06:14
【總結(jié)】第三章離散小波變換尺度和位移的離散化方法?對于連續(xù)小波而言,尺度a、時間t和與時間有關(guān)的偏移量τ都是連續(xù)的。如果利用計算機計算,就必須對它們進行離散化處理,得到離散小波變換。本章主要內(nèi)容?尺度和位移的離散化方法?小波框架理論?二進小波變換尺度和位移的離散化方法?為了減小小波變換系數(shù)的冗余度
2025-04-29 03:56
【總結(jié)】第10章小波變換導(dǎo)論連續(xù)小波變換(Continuouswavelettramsform)實小波的例子(4)Daubechies小波族小波族由滿足一定條件的濾波器,迭代逼近一個小波
2025-04-29 00:50
【總結(jié)】1.序列展開ak是實數(shù),稱為展開系數(shù),uk(x)是實數(shù),稱為展開函數(shù)(1)展開函數(shù)構(gòu)成空間U的正交歸一化基,uk(x)=u'k(x)(2)展開函數(shù)僅構(gòu)成空間U的正交基,但沒有歸一化一、小波變換基礎(chǔ))()(xuaxfkkk??dxxfxuxfxuakkk)()(')
2025-05-07 02:43
【總結(jié)】二進小波變換----對連續(xù)小波變換的頻域抽樣連續(xù)小波變換的缺點:t)(tf?空間中一維信號被變換到二維二進小波的基本思想:?連續(xù)小波變換將一維信號變換到二維變換域上,從而有大量的信息冗余量。的信息。口中包含了一個時頻空間窗fabfW),)((?),)((00abfW?),)((11abfW?
2025-05-07 01:48
【總結(jié)】圖像小波變換《信息隱藏實驗教程》教學(xué)幻燈片六小波與小波變換簡述通俗的講,小波(wavelet)是一種在有限(小)區(qū)域內(nèi)存在的波,是一種其函數(shù)表達式具有緊支集,即在有限范圍內(nèi)函數(shù)f(x)不等于零的特殊波形。假設(shè)存在一個時域函數(shù)φ(t),滿足:
2025-05-06 23:04
【總結(jié)】小波變換簡介傅立葉變換?信號分析是為了獲得時間和頻率之間的相互關(guān)系。1807年,JosephFourier?傅立葉變換以在兩個方向上都無限伸展的正弦曲線波作為正交基函數(shù),提供了有關(guān)頻率域的信息,但有關(guān)時間的局部化信息卻基本丟失。?原因是對于瞬態(tài)信號或高度局部化的信號(如邊緣),由于這些
2025-01-14 15:34
【總結(jié)】第二章連續(xù)小波變換連續(xù)小波基函數(shù)?小波,即小區(qū)域的波,是一種特殊的長度有限、平均值為零的波形。?小波的可容許條件:????RC|||)(|2^????小波特點:?(一)“小”。即在時域都具有緊支集或近似緊支集。?(二)正負交替的“波動性”。即直流分量為零。?信號可
2025-04-29 04:27
【總結(jié)】基于小波變換的信號降噪研究2小波分析基本理論設(shè)Ψ(t)∈L2(R)(L2(R)表示平方可積的實數(shù)空間,即能量有限的信號空間),其傅立葉變換為Ψ(t)。當Ψ(t)滿足條件[4,7]:(1)時,我們稱Ψ(t)為一個基本小波或母小波,將母小波函數(shù)Ψ(t)經(jīng)伸縮和平移后,就可以得到一個小波序列:(2)其中a為
2025-07-30 00:56
【總結(jié)】第4章時頻分析與連續(xù)小波變換非平穩(wěn)信號與時頻分析非平穩(wěn)信號的時變特征與傅里葉變換的局限性?時頻特征與時頻分析(1)鯨魚鳴叫的聲信號(2)滑動軸承的干摩擦信號?傅里葉變換的局限性例1:例2:STFT定義式中:—時移步長;—
2025-04-29 12:06
【總結(jié)】二維小波變換MATLAB實現(xiàn)?dwt2函數(shù)?功能:二維離散小波變換?格式:[cA,cH,cV,cD]=dwt2(X,'wname')?[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)?說明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函數(shù)'wname
2025-05-14 01:27
【總結(jié)】專題講座—小波變換主要內(nèi)容1.引言2.時頻展開3.使用Matlab4.若干應(yīng)用場景引言?傅里葉變換應(yīng)用非常廣泛的原因可能是:?直觀性?數(shù)學(xué)上的完美性?計算上的有效性?仍有局限性:在整個時間軸上積分,表示了信號的全局特征(變換后,時間是亞元)?如果需要分析信號的局部信號怎么辦?
2025-05-10 13:49
【總結(jié)】第五章雙正交小波正交小波的性質(zhì)?對稱性(√),緊支撐(×)?對稱性(×),緊支撐(√)?對稱性(√),緊支撐(√)光滑性(×)→Harr小波緊支撐且線性相位(對稱性)?雙正交小波!?在線性系統(tǒng)理論中,濾波器的傳
2025-05-13 23:53
【總結(jié)】1第4章小波變換的matlab實現(xiàn)2?15種?經(jīng)典類小波:Harr小波、Morlet小波、Mexicanhat小波、Gaussian小波?正交小波:db小波、對稱小波、Coiflets小波、Meyer小波?雙正交小波?查看命令wavemngr('read',1)
2025-05-01 02:11
【總結(jié)】小波變換的實現(xiàn)技術(shù)?Mallat算法?多孔算法?小波變換的提升實現(xiàn)Mallat算法11()()jjjjaDahdDag???????????11()()jjjaUahUdg??????卷積法實現(xiàn)小波變換在實際中具有廣泛的應(yīng)用。實際
2025-04-29 05:53