freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)必修4教案-資料下載頁(yè)

2025-08-05 17:15本頁(yè)面
  

【正文】 作 ,則.4.加法的交換律和平行四邊形法則問(wèn)題:上題中+的結(jié)果與+是否相同? 驗(yàn)證結(jié)果相同從而得到:1)向量加法的平行四邊形法則(對(duì)于兩個(gè)向量共線不適應(yīng)) 2)向量加法的交換律:+=+5.你能證明:向量加法的結(jié)合律:(+) +=+ (+) 嗎?6.由以上證明你能得到什么結(jié)論? 多個(gè)向量的加法運(yùn)算可以按照任意的次序、任意的組合來(lái)進(jìn)行.三、應(yīng)用舉例:例二(P83—84)略變式一艘船從A點(diǎn)出發(fā)以的速度向垂直于對(duì)岸的方向行駛,船的實(shí)際航行速度的大小為,求水流的速度.變式一艘船從A點(diǎn)出發(fā)以的速度向垂直于對(duì)岸的方向行駛,同時(shí)河水的流速為,船的實(shí)際航行的速度的大小為,方向與水流間的夾角是,求和.練習(xí):P84面4題四、小結(jié) 向量加法的幾何意義;2、交換律和結(jié)合律;3、|+| ≤ || + ||,當(dāng)且僅當(dāng)方向相同時(shí)取等號(hào).五、課后作業(yè):《習(xí)案》作業(yè)十八。六、備用習(xí)題 思考:你能用向量加法證明:兩條對(duì)角線互相平分的四邊形是平行四邊形嗎?教學(xué)目標(biāo):1. 了解相反向量的概念;2. 掌握向量的減法,會(huì)作兩個(gè)向量的減向量,并理解其幾何意義;3. 通過(guò)闡述向量的減法運(yùn)算可以轉(zhuǎn)化成向量的加法運(yùn)算,使學(xué)生理解事物間可以相互轉(zhuǎn)化的辯證思想.教學(xué)重點(diǎn):向量減法的概念和向量減法的作圖法.教學(xué)難點(diǎn):減法運(yùn)算時(shí)方向的確定.教學(xué)思路:一、 復(fù)習(xí):向量加法的法則:三角形法則與平行四邊形法則,向量加法的運(yùn)算定律:例:在四邊形中, . 解:二、 提出課題:向量的減法1. 用“相反向量”定義向量的減法(1) “相反向量”的定義:與a長(zhǎng)度相同、 a(2) 規(guī)定:(a) = a. + (a) = 0 如果a、b互為相反向量,則a = b, b = a, a + b = 0 (3) 向量減法的定義:向量a加上的b相反向量,叫做a與b的差. 即:a b = a + (b) 求兩個(gè)向量差的運(yùn)算叫做向量的減法.2. 用加法的逆運(yùn)算定義向量的減法: 向量的減法是向量加法的逆運(yùn)算: 若b + x = a,則x叫做a與b的差,記作a bOabBabab3. 求作差向量:已知向量a、b,求作向量a b ∵(ab) + b = a + (b) + b = a + 0 = a 作法:在平面內(nèi)取一點(diǎn)O, 作= a, = b 則= a b 即a b可以表示為從向量b的終點(diǎn)指向向量a的終點(diǎn)的向量.OABaB’bbbBa+ (b)ab 注意:1176。表示a b. 強(qiáng)調(diào):差向量“箭頭”指向被減數(shù) 2176。用“相反向量”定義法作差向量,a b = a + (b)4. 探究:1) 如果從向量a的終點(diǎn)指向向量b的終點(diǎn)作向量,那么所得向量是b a.2)若a∥b, 如何作出a b???abAABBB’OabaabbOAOBababBAOb三、 例題:例一、(P86 例三)已知向量a、b、c、d,求作向量ab、cd. 解:在平面上取一點(diǎn)O,作= a, = b, = c, = d, ABCDObadc 作, , 則= ab, = cdA B D C例二、平行四邊形中,a,b, 用a、b表示向量、.解:由平行四邊形法則得: = a + b, = = ab變式一:當(dāng)a, b滿足什么條件時(shí),a+b與ab垂直?(|a| = |b|)變式二:當(dāng)a, b滿足什么條件時(shí),|a+b| = |ab|?(a, b互相垂直)變式三:a+b與ab可能是相等向量嗎?(不可能,∵ 對(duì)角線方向不同)練習(xí):1。P87面2題2.在△ABC中, =a, =b,則等于( B )+b +(b)  四:小結(jié):向量減法的定義、作圖法|五:作業(yè):《習(xí)案》作業(yè)十九平面向量基本定理、平面向量的正交分解和坐標(biāo)表示及運(yùn)算教學(xué)目的:(1)了解平面向量基本定理;理解平面向量的坐標(biāo)的概念; (2)理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來(lái)表示,初步掌握應(yīng)用向量解決實(shí)際問(wèn)題的重要思想方法;(3)能夠在具體問(wèn)題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來(lái)表達(dá). 教學(xué)重點(diǎn):平面向量基本定理. 教學(xué)難點(diǎn):平面向量基本定理的理解與應(yīng)用. 向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性.教學(xué)過(guò)程:一、 復(fù)習(xí)引入:1.實(shí)數(shù)與向量的積:實(shí)數(shù)λ與向量的積是一個(gè)向量,記作:λ(1)|λ|=|λ|||;(2)λ0時(shí)λ與方向相同;λ0時(shí)λ與方向相反;λ=0時(shí)λ=2.運(yùn)算定律結(jié)合律:λ(μ)=(λμ) ;分配律:(λ+μ)=λ+μ, λ(+)=λ+λ 3. 向量共線定理 向量與非零向量共線則:有且只有一個(gè)非零實(shí)數(shù)λ,使=λ.二、講解新課:1.思考:(1)給定平面內(nèi)兩個(gè)向量,請(qǐng)你作出向量3+2,2,(2)同一平面內(nèi)的任一向量是否都可以用形如λ1+λ2的向量表示?平面向量基本定理:如果,是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù)λ1,λ2使=λ1+λ2.2.探究:(1) 我們把不共線向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底;(2) 基底不惟一,關(guān)鍵是不共線;(3) 由定理可將任一向量a在給出基底e1、e2的條件下進(jìn)行分解;(4) 基底給定時(shí),分解形式惟一. λ1,λ2是被,唯一確定的數(shù)量OABP3.講解范例:例1 已知向量, +3例2本題實(shí)質(zhì)是4.練習(xí)1:、e2是同一平面內(nèi)的兩個(gè)向量,則有( D )、e2一定平行 、e2的模相等 =λe1+μe2(λ、μ∈R)、e2不共線,則同一平面內(nèi)的任一向量a都有a =λe1+ue2(λ、u∈R) = e12e2,b =2e1+e2,其中ee2不共線,則a+b與c =6e12e2的關(guān)系(B?。? >0,λ2>0,ee2是一組基底,且a =λ1e1+λ2e2,則a與e1不共線,a與e2不共線.(填共線或不共線).5.向量的夾角:已知兩個(gè)非零向量、作,則∠AOB=,叫向量、的夾角,當(dāng)=0176。,、同向,當(dāng)=180176。,、反向,當(dāng)=90176。,與垂直,記作⊥。6.平面向量的坐標(biāo)表示 (1)正交分解:把向量分解為兩個(gè)互相垂直的向量。 (2)思考:在平面直角坐標(biāo)系中,每一個(gè)點(diǎn)都可以用一對(duì)有序?qū)崝?shù)表示,平面內(nèi)的每一個(gè)向量,如何表示呢? 如圖,在直角坐標(biāo)系內(nèi),我們分別取與軸、軸方向相同的兩個(gè)單位向量、由平面向量基本定理知,有且只有一對(duì)實(shí)數(shù)、使得…………我們把叫做向量的(直角)坐標(biāo),記作…………其中叫做在軸上的坐標(biāo),叫做在軸上的坐標(biāo),. 特別地,,.如圖,在直角坐標(biāo)平面內(nèi),以原點(diǎn)O為起點(diǎn)作,則點(diǎn)的位置由唯一確定.設(shè),則向量的坐標(biāo)就是點(diǎn)的坐標(biāo);反過(guò)來(lái),在平面直角坐標(biāo)系內(nèi),每一個(gè)平面向量都是可以用一對(duì)實(shí)數(shù)唯一表示.7.講解范例:例2.教材P96面的例2。8.課堂練習(xí):P100面第3題。三、小結(jié):(1)平面向量基本定理; (2)平面向量的坐標(biāo)的概念;四、課后作業(yè):《習(xí)案》作業(yè)二十一2.3.3平面向量的坐標(biāo)運(yùn)算教學(xué)目的:(1)理解平面向量的坐標(biāo)的概念;(2)掌握平面向量的坐標(biāo)運(yùn)算;(3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線. 教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性.教學(xué)過(guò)程:一、復(fù)習(xí)引入:1.平面向量基本定理:如果,是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù)λ1,λ2使=λ1+λ2(1)我們把不共線向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底;(2)基底不惟一,關(guān)鍵是不共線;(3)由定理可將任一向量a在給出基底e1、e2的條件下進(jìn)行分解;(4)基底給定時(shí),分解形式惟一. λ1,λ2是被,唯一確定的數(shù)量二、講解新課:1.平面向量的坐標(biāo)運(yùn)算思考1:已知:,你能得出、的坐標(biāo)嗎?設(shè)基底為、則即,同理可得(1) 若,則,兩個(gè)向量和與差的坐標(biāo)分別等于這兩個(gè)向量相應(yīng)坐標(biāo)的和與差.(2)若和實(shí)數(shù),則.實(shí)數(shù)與向量的積的坐標(biāo)等于用這個(gè)實(shí)數(shù)乘原來(lái)向量的相應(yīng)坐標(biāo).設(shè)基底為、則,即 實(shí)數(shù)與向量的積的坐標(biāo)等于用這個(gè)實(shí)數(shù)乘原來(lái)向量的相應(yīng)坐標(biāo)。思考2:已知,怎樣求的坐標(biāo)?(3) 若,則==( x2, y2) (x1,y1)= (x2 x1, y2 y1)一個(gè)向量的坐標(biāo)等于表示此向量的有向線段的終點(diǎn)坐標(biāo)減去始點(diǎn)的坐標(biāo).思考3:你能標(biāo)出坐標(biāo)為(x2 x1, y2 y1)的P點(diǎn)嗎?向量的坐標(biāo)與以原點(diǎn)為始點(diǎn)、點(diǎn)P為終點(diǎn)的向量的坐標(biāo)是相同的。三、講解范例:例1 已知=(2,1), =(3,4),求+,,3+4的坐標(biāo).例2 已知平面上三點(diǎn)的坐標(biāo)分別為A(2, 1), B(1, 3), C(3, 4),求點(diǎn)D的坐標(biāo)使這四點(diǎn)構(gòu)成平行四邊形四個(gè)頂點(diǎn).解:當(dāng)平行四邊形為ABCD時(shí),由得D1=(2, 2)當(dāng)平行四邊形為ACDB時(shí),得D2=(4, 6),當(dāng)平行四邊形為DACB時(shí),得D3=(6, 0)例3已知三個(gè)力 (3, 4), (2, 5), (x, y)的合力++=,求的坐標(biāo).解:由題設(shè)++= 得:(3, 4)+ (2, 5)+(x, y)=(0, 0)即: ∴ ∴(5,1)四、課堂練習(xí):1.若M(3, 2) N(5, 1) 且 , 求P點(diǎn)的坐標(biāo)2.若A(0, 1), B(1, 2), C(3, 4) , 則2= .3.已知:四點(diǎn)A(5, 1), B(3, 4), C(1, 3), D(5, 3) , 求證:四邊形ABCD是梯形.五、小結(jié):平面向量的坐標(biāo)運(yùn)算; 六、課后作業(yè):《習(xí)案》作業(yè)二十教學(xué)目的:;;;.教學(xué)重點(diǎn):平面向量的數(shù)量積定義教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用教學(xué)過(guò)程:一、復(fù)習(xí)引入:(1)兩個(gè)非零向量夾角的概念:已知非零向量a與b,作=a,=b,則∠AOB=θ(0≤θ≤π)叫a與b的夾角.說(shuō)明:(1)當(dāng)θ=0時(shí),a與b同向;(2)當(dāng)θ=π時(shí),a與b反向;(3)當(dāng)θ=時(shí),a與b垂直,記a⊥b;(4)注意在兩向量的夾角定義,176。≤q≤180176。(2)兩向量共線的判定(3)練習(xí) =(2,3),b=(4,1+y),且a∥b,則y=( C ) (x,1),B(1,3),C(2,5)三點(diǎn)共線,則x的值為( B ) (4)力做的功:W = |F||s|cosq,q是F與s的夾角.二、講解新課:1.平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作ab,即有ab = |a||b|cosq,(0≤θ≤π).并規(guī)定0向量與任何向量的數(shù)量積為0.探究:向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎渴裁磿r(shí)候?yàn)樨?fù)??jī)蓚€(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定.(2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫(xiě)成ab;今后要學(xué)到兩個(gè)向量的外積ab,而ab是兩個(gè)向量的數(shù)量的積,“ ”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“”代替.(3)在實(shí)數(shù)中,若a185。0,且ab=0,則b=0;但是在數(shù)量積中,若a185。0,且ab=0,不能推出b=.(4)已知實(shí)數(shù)a、b、c(b185。0),則ab=bc 222。 a=b = bc a = c 如右圖:ab = |a||b|cosb = |b||OA|,bc = |b||c|cosa = |b||OA|222。 ab = bc 但a 185。 c (5)在實(shí)數(shù)中,有(ab)c = a(bc),但是(ab)c 185。 a(bc) 顯然,這是因?yàn)樽蠖耸桥cc共線的向量,而右端是與a共線的向量,而一般a與c不共線.2.“投影”的概念:作圖 定義:|b|,不是向量;當(dāng)q為銳角時(shí)投影為正值; 當(dāng)q為鈍角時(shí)投影為負(fù)值; 當(dāng)q為直角時(shí)投影為0;當(dāng)q = 0176。時(shí)投影為 |b|; 當(dāng)q = 180176。時(shí)投影為 |b|.3.向量的數(shù)量積的幾何意義:數(shù)量積ab等于a的長(zhǎng)度與b在a方向上投影|b|cosq的乘積.探究:兩個(gè)向量的數(shù)量積的性質(zhì):設(shè)a、b為兩個(gè)非零向量,a^b 219。 ab = 0當(dāng)a與b同向時(shí),ab = |a||b|; 當(dāng)a與b反向時(shí),ab = |a||b|. 特別的aa = |a|2或 |ab| ≤ |a||b| cosq = 探究:平面向量
點(diǎn)擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1