freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)必修4教案-展示頁(yè)

2024-08-20 17:15本頁(yè)面
  

【正文】 =cosx |tanx|=tanx ∴y=2…………ⅢⅣ………, |cosx|=cosx |tanx|=tanx ∴y=0四、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:1.任意角的三角函數(shù)的定義;2.三角函數(shù)的定義域、值域;3.三角函數(shù)的符號(hào)及誘導(dǎo)公式。即有:,其中.,這組公式的作用是可把任意角的三角函數(shù)值問(wèn)題轉(zhuǎn)化為0~2π間角的三角函數(shù)值問(wèn)題.例5.求下列三角函數(shù)的值:(1), (2),例6.求函數(shù)的值域解: 定義域:cosx185。練習(xí): 確定下列三角函數(shù)值的符號(hào):(1); (2); (3); (4).例4.求證:若且,則角是第三象限角,反之也成立。解:因?yàn)椋?,于是? ;; . 例3.已知角α的終邊過(guò)點(diǎn),求α的四個(gè)三角函數(shù)值。函 數(shù)定 義 域值 域2.三角函數(shù)的定義域、值域注意:(1)在平面直角坐標(biāo)系內(nèi)研究角的問(wèn)題,其頂點(diǎn)都在原點(diǎn),始邊都與x軸的非負(fù)半軸重合.(2) α是任意角,射線OP是角α的終邊,α的各三角函數(shù)值(或是否有意義)與ox轉(zhuǎn)了幾圈,按什么方向旋轉(zhuǎn)到OP的位置無(wú)關(guān).(3)sin是個(gè)整體符號(hào),不能認(rèn)為是“sin”與“α”.(4)任意角的三角函數(shù)的定義與銳角三角函數(shù)的定義的聯(lián)系與區(qū)別:銳角三角函數(shù)是任意角三角函數(shù)的一種特例,它們的基礎(chǔ)共建立于相似(直角)三角形的性質(zhì),“r”同為正值. 所不同的是,銳角三角函數(shù)是以邊的比來(lái)定義的,任意角的三角函數(shù)是以坐標(biāo)與距離、坐標(biāo)與坐標(biāo)、距離與坐標(biāo)的比來(lái)定義的,,由銳角三角函數(shù)的定義到任意角的三角函數(shù)的定義是由特殊到一般的認(rèn)識(shí)和研究過(guò)程.(5)為了便于記憶,我們可以利用兩種三角函數(shù)定義的一致性,將直角三角形置于平面直角坐標(biāo)系的第一象限,使一銳角頂點(diǎn)與原點(diǎn)重合,一直角邊與x軸的非負(fù)半軸重合,利用我們熟悉的銳角三角函數(shù)類(lèi)比記憶.3.例題分析例1.求下列各角的四個(gè)三角函數(shù)值: (通過(guò)本例總結(jié)特殊角的三角函數(shù)值)(1); (2); (3). 解:(1)因?yàn)楫?dāng)時(shí),所以, , , 不存在。 教學(xué)難點(diǎn):利用與單位圓有關(guān)的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用他們的集合形式表示出來(lái). 教學(xué)過(guò)程:一、復(fù)習(xí)引入:初中銳角的三角函數(shù)是如何定義的?在Rt△ABC中,設(shè)A對(duì)邊為a,B對(duì)邊為b,C對(duì)邊為c,銳角A的正弦、余弦、正切依次為 .角推廣后,這樣的三角函數(shù)的定義不再適用,我們必須對(duì)三角函數(shù)重新定義。 德育目標(biāo): (1)使學(xué)生認(rèn)識(shí)到事物之間是有聯(lián)系的,三角函數(shù)就是角度(自變量)與比值(函數(shù)值)的一種聯(lián)系方式;(2)學(xué)習(xí)轉(zhuǎn)化的思想,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;教學(xué)重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào)),以及這三種函數(shù)的第一組誘導(dǎo)公式。補(bǔ)充:1.利用余弦線比較的大小; 2.若,則比較、的大小; 3.分別根據(jù)下列條件,寫(xiě)出角的取值范圍: (1) ; (2) ; (3).(1)教學(xué)目的:知識(shí)目標(biāo):;,會(huì)求角α的各三角函數(shù)值;、值域,誘導(dǎo)公式(一)?;?10176。 30176。 30176。 tana 解: 1176。xyoP1P21176。的角xyoTA210176。 與 解: 如圖可知: tan tan 例2.利用單位圓尋找適合下列條件的0176。五、課后作業(yè): 作業(yè)4 參考資料:1176。(1); (2); (3); (4).解:圖略。(4)三條有向線段的書(shū)寫(xiě):有向線段的起點(diǎn)字母在前,終點(diǎn)字母在后面。(2)三條有向線段的方向:正弦線由垂足指向的終邊與單位圓的交點(diǎn);余弦線由原點(diǎn)指向垂足;正切線由切點(diǎn)指向與的終邊的交點(diǎn)。2.三角函數(shù)線的定義:設(shè)任意角的頂點(diǎn)在原點(diǎn),始邊與軸非負(fù)半軸重合,終邊與單位圓相交與點(diǎn),過(guò)作軸的垂線,垂足為;過(guò)點(diǎn)作單位圓的切線,它與角的終邊或其反向延長(zhǎng)線交與點(diǎn).(Ⅰ)(Ⅱ)(Ⅳ)(Ⅲ)由四個(gè)圖看出:當(dāng)角的終邊不在坐標(biāo)軸上時(shí),有向線段,于是有, ,我們就分別稱(chēng)有向線段為正弦線、余弦線、正切線。規(guī)定:與坐標(biāo)軸方向一致時(shí)為正,與坐標(biāo)方向相反時(shí)為負(fù)。 教學(xué)過(guò)程:一、復(fù)習(xí)引入:1. 三角函數(shù)的定義2. 誘導(dǎo)公式練習(xí)1. D練習(xí)2. B練習(xí)3. C二、講解新課: 當(dāng)角的終邊上一點(diǎn)的坐標(biāo)滿(mǎn)足時(shí),有三角函數(shù)正弦、余弦、正切值的幾何表示——三角函數(shù)線。 德育目標(biāo):學(xué)習(xí)轉(zhuǎn)化的思想,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神; 教學(xué)重點(diǎn):正弦、余弦、正切線的概念。30'化成弧度.例2.把化成度.例3.計(jì)算:;.例4.將下列各角化成0到2π的角加上2kπ(k∈Z)的形式:;.例5.將下列各角化成2kπ + α(k∈Z,0≤α<2π)的形式,并確定其所在的象限.;.解: (1) 而是第三象限的角,是第三象限角.(2) 是第二象限角. 證法一:∵圓的面積為,∴圓心角為1rad的扇形面積為,又扇形弧長(zhǎng)為l,半徑為R, ∴扇形的圓心角大小為rad, ∴扇形面積.證法二:設(shè)圓心角的度數(shù)為n,則在角度制下的扇形面積公式為,又此時(shí)弧長(zhǎng),∴.可看出弧度制與角度制下的扇形面積公式可以互化,而弧度制下的扇形面積公式顯然要簡(jiǎn)潔得多.7.課堂小結(jié)①什么叫1弧度角? ②任意角的弧度的定義③“角度制”與“弧度制”的聯(lián)系與區(qū)別.8.課后作業(yè):①閱讀教材P6 –P8;②教材P9練習(xí)第6題;③教材P10面8題及B3題.(三)教學(xué)目的:知識(shí)目標(biāo):、定義域與值域、符號(hào)、及誘導(dǎo)公式; 、余弦、正切的三角函數(shù)值; 。360176。180176。135176。90176。45176。(n∈Z) ,此時(shí),屬于第四象限角因此屬于第二或第四象限角.(一)教學(xué)目標(biāo)(四) 知識(shí)與技能目標(biāo)理解弧度的意義;了解角的集合與實(shí)數(shù)集R之間的可建立起一一對(duì)應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).(五) 過(guò)程與能力目標(biāo)能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長(zhǎng)公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問(wèn)題(六) 情感與態(tài)度目標(biāo)通過(guò)新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過(guò)對(duì)弧度制與角度制下弧長(zhǎng)公式、扇形面積公式的對(duì)比,讓學(xué)生感受弧長(zhǎng)及扇形面積公式在弧度制下的簡(jiǎn)潔美.教學(xué)重點(diǎn)弧度的概念.弧長(zhǎng)公式及扇形的面積公式的推導(dǎo)與證明.教學(xué)難點(diǎn)“角度制”與“弧度制”的區(qū)別與聯(lián)系.教學(xué)過(guò)程一、復(fù)習(xí)角度制:初中所學(xué)的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來(lái)度量角的制度叫做角度制.二、新課:1.引 入:由角度制的定義我們知道,角度是用來(lái)度量角的, 角度制的度量是60進(jìn)制的,—弧度制,它是如何定義呢?2.定 義我們規(guī)定,長(zhǎng)度等于半徑的弧所對(duì)的圓心角叫做1弧度的角;用弧度來(lái)度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實(shí)際運(yùn)算中,常常將rad單位省略.3.思考:(1)一定大小的圓心角所對(duì)應(yīng)的弧長(zhǎng)與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?(2)引導(dǎo)學(xué)生完成P6的探究并歸納:弧度制的性質(zhì):①半圓所對(duì)的圓心角為 ②整圓所對(duì)的圓心角為③正角的弧度數(shù)是一個(gè)正數(shù). ④負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù).⑤零角的弧度數(shù)是零. ⑥角α的弧度數(shù)的絕對(duì)值|α|=4.角度與弧度之間的轉(zhuǎn)換: ①將角度化為弧度:; ;;.②將弧度化為角度:;;;.5.常規(guī)寫(xiě)法:① 用弧度數(shù)表示角時(shí),常常把弧度數(shù)寫(xiě)成多少π 的形式, 不必寫(xiě)成小數(shù). ② 弧度與角度不能混用.6.特殊角的弧度角度0176。360176。+270176。(n∈Z) ,此時(shí),屬于第二象限角當(dāng)k為奇數(shù)時(shí),令k=2n+1 (n∈Z),則n360176。+90176。(k∈Z) .當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n180176。+90176。(k∈Z)故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角.又k<2α<(2k +1)360176。+540176。<2α<2k360176。+270176。<α<k360176?!堞拢?20176。180176。的角表示) .解:{α | α = 90176。48',第二象限角;例4.寫(xiě)出終邊在y軸上的角的集合(用0176。,第三象限角;⑵280176。;⑶-950176。范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.⑴-120176。與角α終邊相同,但不能表示與角α終邊相同的所有角.例3.在0176。的整數(shù)倍;⑷ 角α + k360 176。; ⑹ 480176。; ⑷ 300176。; ⑵ 120176。B2OxB3y30176。高中數(shù)學(xué)必修4教案.1 任意角教學(xué)目標(biāo)(一) 知識(shí)與技能目標(biāo)理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.(二) 過(guò)程與能力目標(biāo)會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書(shū)寫(xiě)終邊相同角的集合;掌握區(qū)間角的集合的書(shū)寫(xiě).(三) 情感與態(tài)度目標(biāo)1. 提高學(xué)生的推理能力;  2.培養(yǎng)學(xué)生應(yīng)用意識(shí).教學(xué)重點(diǎn) 任意角概念的理解;區(qū)間角的集合的書(shū)寫(xiě).教學(xué)難點(diǎn)終邊相同角的集合的表示;區(qū)間角的集合的書(shū)寫(xiě).教學(xué)過(guò)程一、引入:1.回顧角的定義①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.二、新課:1.角的有關(guān)概念:①角的定義:角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.始邊終邊頂點(diǎn)AOB②角的名稱(chēng):③角的分類(lèi):負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角 正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角④注意:⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;⑵零角的終邊與始邊重合,如果α是零角α =0176。;⑶角的概念經(jīng)過(guò)推廣后,已包括正角、負(fù)角和零角.⑤練習(xí):請(qǐng)說(shuō)出角α、β、γ各是多少度?2.象限角的概念:①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角.例1.如圖⑴⑵中的角分別屬于第幾象限角?⑵B1y⑴Ox45176。60o例2.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.⑴ 60176。; ⑶ 240176。; ⑸ 420176。;答:分別為2象限角.3.探究:教材P3面終邊相同的角的表示:所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={ β | β = α + k ,k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和.注意:⑴ k∈Z⑵ α是任一角;⑶ 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無(wú)限個(gè),它們相差360176。720 176。到360176。;⑵640 176。12'.答:⑴240176。,第四象限角;⑶129176。到360176。+ n,n∈Z}.例5.寫(xiě)出終邊在上的角的集合S,并把S中適合不等式-360176。的元素β寫(xiě)出來(lái).4.課堂小結(jié)①角的定義;②角的分類(lèi):負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角 正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角③象限角;④終邊相同的角的表示法.5.課后作業(yè):①閱讀教材P2P5;  ②教材P5練習(xí)第15題; ?、?、3題思考題:已知α角是第三象限角,則2α,各是第幾象限角?解:角屬于第三象限, k+180176。360176。(k∈Z)因此,2k+360176。360176。(k∈Z)即(2k +1)360176。+180176。180176。<<k+135176。360176。<<n+135176。360176。<<n+315176。30176。60176。120176。150176。270176?;《?7.弧長(zhǎng)公式弧長(zhǎng)等于弧所對(duì)應(yīng)的圓心角(的弧度數(shù))的絕對(duì)值與半徑的積.例1.把67176。 能力目標(biāo):掌握用單位圓中的線段表示三角函數(shù)值,從而使學(xué)生對(duì)三角函數(shù)的定義域、值域有更深的理解。教學(xué)難點(diǎn):正弦、余弦、正切線的利用。1.有向線段:坐標(biāo)軸是規(guī)定了方向的直線,那么與之平行的線段亦可規(guī)定方向。有向線段:帶有方向的線段。說(shuō)明:(1)三條有向線段的位置:正弦線為的終邊與單
點(diǎn)擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1