【總結(jié)】§5初等矩陣一、初等矩陣的概念和簡單性質(zhì)二、矩陣的等價(jià)一、初等矩陣的概念和簡單性質(zhì)定義由單位矩陣經(jīng)過一次初等變換得到的矩陣稱為初等矩陣.E的第I行與第j行交換得到初等矩陣11011(,)11011ijiPijj????
2025-07-23 14:24
【總結(jié)】第五節(jié)矩陣的初等變換及初等矩陣定義1下面三種變換稱為矩陣的初等行變換:??);記作兩行對調(diào)兩行(對調(diào)jirrji?,,1??;02乘以某一行的所有元素以數(shù)?k)記作行乘(第krkii?,??.3)記作行上倍加到第行的對應(yīng)的元素上去(第倍加到另一行把某一行所有元素的jikrrikjk
2025-10-05 17:21
【總結(jié)】1§5線性變換的對角矩陣主要內(nèi)容對角化概念對角化的條件目錄下頁返回結(jié)束對角化的計(jì)算方法2一、對角化概念對角矩陣是矩陣中最簡單的一種.于是問題變?yōu)槟男┚€性變換在一組適當(dāng)?shù)幕驴梢允菍蔷仃?(),,,.,.nnLVPVV
2025-07-17 19:14
【總結(jié)】多小波變換的矩陣形式及其軟件實(shí)現(xiàn)上頁下頁退出多小波變換的矩陣形式及其軟件實(shí)現(xiàn)我們知道,進(jìn)行1次多小波變換的分解與重構(gòu)公式為:與單小波不同之處在于,公式中的s(n,k)是r維列向量,H(k),G(k)是rXr大小的矩陣。因此,在使用這個(gè)公式前,
2025-05-03 13:40
【總結(jié)】矩陣的合同變換摘要:矩陣的合同變換是高等代數(shù)矩陣?yán)碚撝?,基本交換。在《高等代數(shù)》里,我們僅討論簡單而直接的變換,而矩陣的合同變換與矩陣相似變換,二次型等有著諸多相同性質(zhì)和聯(lián)系。關(guān)鍵詞:矩陣秩合同對角化定義1:如果矩陣A可以經(jīng)過一系列初等變換變成B,則積A與B等價(jià),記為定義2:設(shè)A,B都是數(shù)域F上的n階方陣,如果存在數(shù)域F上的n階段可逆矩陣P使得,則稱A和B相似
2025-07-24 03:28
【總結(jié)】用矩陣的初等行變換求N個(gè)整數(shù)的最大公因子數(shù)學(xué)系20021112班高興龍指導(dǎo)教師鐵勇摘要:初等變換是高等代數(shù)中重要的內(nèi)容之一,在數(shù)學(xué)學(xué)習(xí)中體現(xiàn)出很大的實(shí)用性。本文在常規(guī)方法(提取公因數(shù)法、分解質(zhì)因數(shù)法等)的基礎(chǔ)上,運(yùn)用最大公因子的理論知識和矩陣的初等行變換,簡便有效地求出N個(gè)數(shù)的最大公因子。其意義在于體現(xiàn)這種方法的優(yōu)越性,促進(jìn)此類問題的研究。關(guān)鍵詞:初等行變換;整數(shù)
2025-01-13 14:11
【總結(jié)】選修4-2“矩陣與變換”全書復(fù)習(xí)江蘇省白塔高級中學(xué)相武通過幾何變換討論二階矩陣的乘法及性質(zhì)、逆矩陣和矩陣的特征向量,并以變換和映射的觀點(diǎn)理解解線性方程組的意義,初步展示矩陣應(yīng)用的廣泛性。主要內(nèi)容二階矩陣與平面向量幾種常見的平面變換變換的復(fù)合與矩陣的乘法逆矩陣與逆變換特征值與
2025-01-08 13:16
【總結(jié)】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換?初等函數(shù)復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換yieyezfxxsincos)(??1212(),()(),
2025-08-20 01:35
【總結(jié)】XXXX大學(xué)本科畢業(yè)論文(設(shè)計(jì))題目:矩陣分解的初等方法學(xué)院:學(xué)生姓名:學(xué)號:專業(yè):年級:2008級完成日期:2012年5月10日指導(dǎo)教師:
2025-08-20 19:16
【總結(jié)】1▲雅可比矩陣的定義▲微分運(yùn)動與廣義速度▲雅可比矩陣的構(gòu)造法▲PUMA560機(jī)器人的雅可比矩陣▲逆雅可比矩陣▲力雅可比矩陣上一章我們討論了剛體的位姿描述、齊次變換,機(jī)器人各連桿間的位移關(guān)系,建立了機(jī)器人的運(yùn)動學(xué)方程,研究了運(yùn)動學(xué)逆解,建立了操作空間與關(guān)節(jié)空間的映射關(guān)系。
2025-01-18 17:38
【總結(jié)】矩陣與變換淮安市楚州中學(xué)陳軍矩陣的概念,零矩陣,行矩陣,列矩陣;;;二階矩陣與平面列向量的乘法;;.二階矩陣與平面向量1,3形如??????8090,6085??????23324m???????的矩形
2025-01-06 16:33
【總結(jié)】《線性代數(shù)》下頁結(jié)束返回第二章矩陣§1矩陣的概念§2矩陣的線性運(yùn)算、乘法和轉(zhuǎn)置運(yùn)算下頁《線性代數(shù)》下頁結(jié)束返回第二章矩陣本章要求1.掌握矩陣的運(yùn)算,了解方陣的冪、方陣乘積的行列式;2.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)及
2025-05-15 00:58
【總結(jié)】學(xué)習(xí)要求理解逆矩陣的概念,掌握逆矩陣的性質(zhì)及矩陣可逆的充要條件,了解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣;了解分塊矩陣的概念及其運(yùn)算,掌握分塊對角矩陣的性質(zhì);理解矩陣的秩的概念?!镆詫τ跀?shù)的運(yùn)算,如果對于數(shù),存在數(shù),使得,則稱數(shù)為數(shù)
2025-04-29 03:58
【總結(jié)】畢業(yè)論文開題報(bào)告題目分塊矩陣的若干初等運(yùn)算及其應(yīng)用學(xué)院數(shù)理學(xué)院專業(yè)數(shù)學(xué)與應(yīng)用數(shù)學(xué)班 級1314102學(xué) 號131410207學(xué)生姓名寇夢田指導(dǎo)教師李德英開題日期6《分塊矩陣的若干初等運(yùn)算及其應(yīng)用》開題報(bào)告一、選題的背景
2025-01-18 22:13
【總結(jié)】一、反函數(shù)二、基本初等函數(shù)及其圖像第二節(jié)初等函數(shù)及其圖像三、構(gòu)建新函數(shù)四、初等函數(shù)五、小結(jié)六、練習(xí)第二節(jié)初等函數(shù)及其圖像一、反函數(shù)反函數(shù)的定義如果由函數(shù)y=f(x)(單值單調(diào)),可反求出x=g(y),則稱g(y)為f(x)
2025-08-05 03:22