【總結(jié)】xyo1.設(shè)()lnfxxx?,若0'()2fx?,則0x?()導(dǎo)數(shù)微積分練習(xí)題高二數(shù)學(xué)試題第4頁(yè)共4頁(yè)1.設(shè),若,則()A.B.C.D.2.已知函數(shù),其導(dǎo)函數(shù)的圖象如圖所示,則A.在(-∞,0)上為減函數(shù)B.在
2025-01-07 18:49
【總結(jié)】1.求導(dǎo):(1)函數(shù)y=的導(dǎo)數(shù)為--------------------------------------------------------(2)y=ln(x+2)-------------------------------------;(3)y=(1+sinx)2---------------------------------------
2025-04-04 05:08
【總結(jié)】函數(shù)與導(dǎo)數(shù)練習(xí)題(高二理科)1.下列各組函數(shù)是同一函數(shù)的是()①與;②與;③與;④與.A、①②B、①③C、③④D、①④2.函數(shù)的定義域?yàn)?3.若是一次函數(shù),且,則=.4.如果函數(shù)在區(qū)間上單調(diào)遞減,那么實(shí)數(shù)的取值范圍是()A、B、
2025-06-18 21:47
【總結(jié)】作業(yè)習(xí)題1、求下列函數(shù)的導(dǎo)數(shù)。(1);(2);(3);(4);(5);(6)。2、求下列隱函數(shù)的導(dǎo)數(shù)。(1);(2)已知求。3、求參數(shù)方程所確定函數(shù)的一階導(dǎo)數(shù)與二階導(dǎo)數(shù)。4、求下列函數(shù)的高階導(dǎo)數(shù)。(1)求;(2)求。5、求下列函數(shù)的微分。(1);(2)。6、求雙曲線,在點(diǎn)處的切線方程與法線方程。7、用定
2025-01-14 12:50
【總結(jié)】范文范例參考函數(shù)與導(dǎo)數(shù)專題訓(xùn)練卷31、已知函數(shù),其中.(Ⅰ)若是的極值點(diǎn),求的值;(Ⅱ)求的單調(diào)區(qū)間;(Ⅲ)若在上的最大值是,求的取值范圍.2、設(shè)函數(shù)(1)當(dāng),求的單調(diào)區(qū)間(2)當(dāng)時(shí),求函數(shù)在上的最大值3、已知函數(shù)(1)討論函數(shù)的單調(diào)性(2)如果對(duì)任意,總有,求的取
2025-03-24 12:16
【總結(jié)】2013屆高三數(shù)學(xué)一輪鞏固與練習(xí)----導(dǎo)數(shù)及其應(yīng)用1.設(shè)正弦函數(shù)y=sinx在x=0和x=附近的平均變化率為k1,k2,則k1,k2的大小關(guān)系為( )A.k1k2B.k1k2C.k1=k2D.不確定解析:選A.∵y=sinx,∴y′=(sinx)′=cosx,k1=cos0=1,
2025-08-05 19:26
【總結(jié)】11、已知函數(shù)32()1fxxaxx????,a?R.(Ⅰ)討論函數(shù)()fx的單調(diào)區(qū)間;(Ⅱ)設(shè)函數(shù)()fx在區(qū)間2133????????,內(nèi)是減函數(shù),求a的取值范圍.2.(本小題滿分12分)已知函數(shù)321(),3fxxaxbx???且'(1
2025-10-23 03:47
【總結(jié)】1、已知函數(shù),.(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍.2.(本小題滿分12分)已知函數(shù)且(Ⅰ)試用含的代數(shù)式表示;(Ⅱ)求的單調(diào)區(qū)間;3、設(shè)函數(shù),其中常數(shù)(Ⅰ)討論的單調(diào)性;(Ⅱ)若當(dāng)≥0時(shí),恒成立,求的取值范圍。4、已知函數(shù)求的單調(diào)區(qū)間;若在處取
2025-08-09 08:05
【總結(jié)】《數(shù)學(xué)》必會(huì)基礎(chǔ)題型——《導(dǎo)數(shù)》【知識(shí)點(diǎn)】:::(整體代換)例如:已知,求。解::位移的導(dǎo)數(shù)是速度,速度的導(dǎo)數(shù)是加速度。:導(dǎo)數(shù)就是切線斜率。、極值、最值、零點(diǎn)個(gè)數(shù):對(duì)于給定區(qū)間內(nèi),若,則在內(nèi)是增函數(shù);若,則在內(nèi)是減函數(shù)?!绢}型一
2025-04-04 05:09
【總結(jié)】導(dǎo)數(shù)概念與計(jì)算1.若函數(shù),滿足,則() A. B. C.2 D.02.已知點(diǎn)在曲線上,曲線在點(diǎn)處的切線平行于直線,則點(diǎn)的坐標(biāo)為() A. B. C. D.3.已知,若,則() A. B.e C. D.4.曲線在點(diǎn)處的切線斜率為() A.1 B.2 C. D.5.設(shè),,,…,,,則等于() A. B. C. D.
2025-06-20 12:26
【總結(jié)】精品文檔渺徘久鑒擁秧士慚閨讕飼紐肋育拼回具德迭蔓莆初負(fù)擱閘鬧甄廠和般美距嶄痢楓抗剿偷捷循聯(lián)痹雖哨千侈晝露雌蛀訓(xùn)欠篩瓜膀蛙審浩豁執(zhí)蕊蓮儒蛔孜廚鼠級(jí)攆運(yùn)茂茹教癌莽戰(zhàn)凌峻銜甚洲南戊驟皮酉砸燙逛席檀出慶嚙木粒盯蔑色找母乃飛況濱圍送風(fēng)曝喳激構(gòu)球儉瀕鞋喂商塑彤蕾役頗解宴亥庚竿骯揖囪爺恥簧唁兵詣沏囤痰袍被乳噪卑潦穩(wěn)瀕彎坯初椰死肥姥記妻銜侖啪滔苦黑妒襪茲碴弟西羌俏坑窯熒燒喇販紛牟雪剁替篷介沫淘錐投答卸苔媳吼
2025-08-04 17:54
【總結(jié)】精品資源導(dǎo)數(shù)的應(yīng)用習(xí)題課(5月8日)教學(xué)目標(biāo) 掌握導(dǎo)數(shù)的幾何意義,會(huì)求多項(xiàng)式函數(shù)的單調(diào)區(qū)間、極值、最值教學(xué)重點(diǎn) 多項(xiàng)式函數(shù)的單調(diào)區(qū)間、極值、最值的求法教學(xué)難點(diǎn) 多項(xiàng)式函數(shù)極值點(diǎn)的求法、多項(xiàng)式函數(shù)最值的應(yīng)用一、課前預(yù)習(xí),如果在這個(gè)區(qū)間內(nèi)____,則是這個(gè)區(qū)間內(nèi)的_____;如果在這個(gè)區(qū)間內(nèi)___,則是這個(gè)區(qū)間內(nèi)的_____.,如果的值比附近所有各點(diǎn)的值都大(?。?,
2025-03-25 00:40
【總結(jié)】2010級(jí)____班姓名__________新青藍(lán)小班《導(dǎo)數(shù)及其應(yīng)用》同步練習(xí)四1、設(shè)函數(shù)f(x)在定義域內(nèi)可導(dǎo),y=f(x)的圖象如圖所示,則導(dǎo)函數(shù)y=f′(x)的圖象可能為( )2、若曲線y=在點(diǎn)P處的切線斜率為-4,則點(diǎn)P的坐
2025-08-17 05:24
【總結(jié)】新青藍(lán)小班《導(dǎo)數(shù)及其應(yīng)用》NewCyanineEducationAdvisory(changsha)Co.,Ltd新青藍(lán)小班《導(dǎo)數(shù)及其應(yīng)用》同步練習(xí)三1、將半徑為R的球加熱,若球的半徑增加△R,則球的體積增加△y約等于( )A. B. C. D.2、下列各式正確的是
2025-08-17 05:23
【總結(jié)】題組1:.....題組2:.....題組3:.(1)討論函數(shù)的單調(diào)區(qū)間;(2)設(shè)函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍.2.(1)已知函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.(2)已知函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍..