【總結(jié)】第一篇:函數(shù)的單調(diào)性 函數(shù)的單調(diào)性說課稿(市級一等獎(jiǎng))函數(shù)單調(diào)性說課稿《函數(shù)的單調(diào)性》說課稿(市級一等獎(jiǎng))旬陽縣神河中學(xué)詹進(jìn)根 我說課的課題是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書必修1》第二章第三節(jié)——函...
2025-10-26 01:37
【總結(jié)】函數(shù)的單調(diào)性與二次函數(shù)重難點(diǎn)知識歸納(一)函數(shù)的單調(diào)性1、單調(diào)增函數(shù)的定義:在函數(shù)y=f(x)的定義域內(nèi)的一個(gè)區(qū)間A上,如果對于任意兩數(shù)x1,x2∈A,當(dāng)x1x2時(shí),都有f(x1)f(x2),那么,就稱函數(shù)y=f(x)在區(qū)間A上是增加的,有時(shí)也稱函數(shù)y=f(x)在區(qū)間A上是遞增的.2、單調(diào)減函數(shù)的定義:在函數(shù)y=f(x)的定義域內(nèi)的一個(gè)區(qū)間A上,如果對于任意兩
2025-06-18 20:41
【總結(jié)】......函數(shù)的單調(diào)性與最值復(fù)習(xí):按照列表、描點(diǎn)、連線等步驟畫出函數(shù)的圖像.圖像在軸的右側(cè)部分是上升的,當(dāng)在區(qū)間[0,+)上取值時(shí),隨著的增大,相應(yīng)的值也隨著增大,如果取∈[0,+),得到,,那么當(dāng)<
2025-05-16 01:56
【總結(jié)】函數(shù)單調(diào)性說課稿《函數(shù)的單調(diào)性》說課稿宋桂霞我說課的課題是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書必修1》第二章第三節(jié)——函數(shù)的單調(diào)性。我將根據(jù)新課標(biāo)的理念和高一學(xué)生的認(rèn)知特點(diǎn)設(shè)計(jì)本節(jié)課的教學(xué)。我從下面三個(gè)方面闡述我對這節(jié)課的理解和教學(xué)設(shè)計(jì)。一、教材分析1、教材內(nèi)容本節(jié)課是北師大版(必修一)第二章函數(shù)第三節(jié)——函數(shù)的單調(diào)性,本節(jié)
2025-04-16 23:39
【總結(jié)】卓越個(gè)性化教學(xué)講義學(xué)生姓名年級授課時(shí)間教師姓課時(shí)2課題函數(shù)的單調(diào)性和最值教學(xué)目標(biāo)理解函數(shù)單調(diào)性的定義,會求函數(shù)的單調(diào)性和最值,以及利用單調(diào)性解決一些問題.重點(diǎn)函數(shù)單調(diào)性的判斷和函數(shù)單調(diào)性的應(yīng)用.難點(diǎn)函數(shù)單調(diào)性的判斷和函數(shù)單調(diào)性的應(yīng)用.(一)主要知識
2025-05-16 01:41
【總結(jié)】一、課題:函數(shù)的單調(diào)性二、教學(xué)目標(biāo)1、知識目標(biāo):從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.2、能力目標(biāo):通過對函數(shù)單調(diào)性定義的探究,培養(yǎng)學(xué)生滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達(dá)能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.3、情感目標(biāo):通過對單調(diào)性的探究培養(yǎng)學(xué)生細(xì)心觀
2025-06-07 16:29
【總結(jié)】函數(shù)的性質(zhì)知識要點(diǎn)一、函數(shù)的奇偶性1.定義:如果對于函數(shù)f(x)定義域內(nèi)的任意x都有f(-x)=-f(x),則稱f(x)為奇函數(shù);如果對于函數(shù)f(x)定義域內(nèi)的任意x都有f(-x)=f(x),則稱f(x)為偶函數(shù)。如果函數(shù)f(x)不具有上述性質(zhì),則f(x),則f(x)既是奇函數(shù),又是偶函數(shù)。注意:(1)函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì)
2025-06-18 20:33
【總結(jié)】函數(shù)的單調(diào)性學(xué)習(xí)目標(biāo)了解函數(shù)單調(diào)性的概念掌握判斷一些簡單函數(shù)單調(diào)性的方法教學(xué)方法講解法、練習(xí)法相結(jié)合本節(jié)重點(diǎn),難點(diǎn)函數(shù)單調(diào)性的定義證明函數(shù)單調(diào)性的方法步驟y=x2從圖象可以看到:圖象在y軸的右側(cè)部分是上升的,也就是說,當(dāng)x在區(qū)間[0,+)上取值時(shí),隨著x的增大
2025-08-04 14:16
【總結(jié)】函數(shù)的單調(diào)性、奇偶性基礎(chǔ)卷選擇題1.若函數(shù)是奇函數(shù),則m的取值是(?。 ? 2.已知函數(shù)y=f(x)在(-3,0)上是減函數(shù),又y=f(x-3)是偶函數(shù),則下列結(jié)論正確的是(?。〢.
2025-08-04 16:22
【總結(jié)】復(fù)合函數(shù)單調(diào)性的判斷增↗減↘增↗減↘增↗減↘增↗減↘減↘增↗以上規(guī)律還可總結(jié)為:“同向得增,異向得減”或“同增異減”.1求函數(shù)y=(4x-x2)的單調(diào)區(qū)間.2、求函數(shù)的單調(diào)性及最值(-∞,0)上為增函數(shù)的是A.B.=-(x+1)2
2025-06-25 19:48
【總結(jié)】第一篇:函數(shù)的單調(diào)性(教案) 函數(shù)的單調(diào)性(教案) 一、教學(xué)目標(biāo) 1、使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法。 2、通過對函數(shù)單調(diào)...
2025-10-20 15:22
【總結(jié)】分類匯編26:函數(shù)的單調(diào)性與導(dǎo)數(shù)一、選擇題.(山東省棗莊三中2014屆高三10月學(xué)情調(diào)查數(shù)學(xué)(理)試題)設(shè)函數(shù)則的單調(diào)減區(qū)間為 ( ?。〢. B. C. D..(山東省煙臺二中2014屆高三10月月考理科數(shù)學(xué)試題)若函數(shù)在區(qū)間內(nèi)為減函數(shù),在區(qū)間為增函數(shù),則實(shí)數(shù)a的取值范圍是 ( )A. B. C. D.
2025-05-16 05:18
【總結(jié)】《函數(shù)的單調(diào)性與導(dǎo)數(shù)》教學(xué)設(shè)計(jì)教材分析1、內(nèi)容分析??導(dǎo)數(shù)是微積分的核心概念之一,是高中數(shù)學(xué)教材新增知識,在研究函數(shù)性質(zhì)時(shí)有獨(dú)到之處,,是在學(xué)習(xí)了導(dǎo)數(shù)的概念、,又為研究函數(shù)的極值和最值打下了基礎(chǔ).由于學(xué)生在高一已經(jīng)掌握了函數(shù)單調(diào)性的定義,,用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性比用定義要簡捷的多(尤其對于三次和三次以上的多項(xiàng)式函數(shù),或圖像難以畫出的函數(shù)而言),充
2025-04-16 23:38
【總結(jié)】Email:lihongqing999@:570206??谑泻P愦蟮?9號海南華僑中學(xué)李紅慶工作室函數(shù)的單調(diào)性與最值漫談海南華僑中學(xué)黃玲玲函數(shù)的單調(diào)性與最值是中學(xué)數(shù)學(xué)的核心內(nèi)容.從中學(xué)數(shù)學(xué)知識的網(wǎng)絡(luò)來看,函數(shù)的單調(diào)性與最值在中學(xué)數(shù)學(xué)中起著“紐帶”的作用,她承前于函數(shù)的值域、方程有解的條件、不等式證明,啟后于數(shù)列的最值問題、導(dǎo)數(shù)的應(yīng)用等知識.例如:求函數(shù)的值域,令,則,,則函
2025-05-16 01:34
【總結(jié)】淺談作文訓(xùn)練書面表達(dá)一直是學(xué)習(xí)語文的重要組成部分。它要求學(xué)生有扎實(shí)的語言基本功,具備一定的審題能力、想象能力、表達(dá)能力等。老師只有在平時(shí)教學(xué)中有意識地系統(tǒng)訓(xùn)練學(xué)生的寫作能力,學(xué)生才能在激烈的競爭中信心十足,游刃有余。一、循序漸進(jìn)“冰凍三尺,非一日之寒”。寫作能力并非是一蹴而就的。它必須由淺入深、由簡到繁、由易到難、循序漸進(jìn)、一環(huán)緊扣一
2024-11-23 12:37