【導(dǎo)讀】按一定順序排列的一列數(shù)叫數(shù)列。叫做這個數(shù)列的通項(xiàng)公式。通項(xiàng)公式的求法:?①若是等差數(shù)列,且,①若是等比數(shù)列,且,{an}中,前n項(xiàng)和為Sn,且a2=1,這節(jié)課我們學(xué)到了什么?作業(yè):紅對勾55頁,
【總結(jié)】數(shù)列通項(xiàng)的求法一、公式法二、迭加法若an+1=an+f(n),則:若an+1=f(n)an,則:三、疊乘法an=S1(n=1),Sn-Sn-1(n≥2).an=a1+?(ak-ak-1)=a1+?f(k-1)=a1+?f(k).n-1k=1
2024-11-11 08:49
【總結(jié)】數(shù)列通項(xiàng)的求法高三備課組求數(shù)列的通項(xiàng)方法1、由等差,等比定義,寫出通項(xiàng)公式2、利用迭加an-an-1=f(n)、迭乘an/an-1=f(n)、迭代3、一階遞推,我們通常將其化為
2024-11-09 08:47
【總結(jié)】數(shù)列的通項(xiàng)公式(高三復(fù)習(xí)課)—以本為據(jù),發(fā)散思維一、回顧?等差數(shù)列的定義:一個數(shù)列從第二項(xiàng)起,它的每一項(xiàng)與前一項(xiàng)的差為常數(shù),那么這個數(shù)列為等差數(shù)列。其通項(xiàng)為:dnaan)1(1???是如何推導(dǎo)出來的呢??由定義:
2024-11-10 00:27
【總結(jié)】專題五數(shù)列解答題的解法?第二部分考題剖析>>試題特點(diǎn)>>0311數(shù)列解答題的解法應(yīng)試策略>>072020年高考各地的16套試卷中,每套試卷均有1道數(shù)列解答題試題,處于壓軸位置的有6道.由此知,數(shù)列解答題屬于中檔題或難題.
2024-11-10 07:30
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件36《等差數(shù)列與等比數(shù)列的綜合問題》課前熱身:30,37,32,35,34,33,36,(),38的特點(diǎn),在括號內(nèi)適當(dāng)?shù)囊粋€數(shù)是_____.x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四
【總結(jié)】時間:2022年10月13日一.數(shù)列的基本知識按照一定順序排列的一列數(shù)稱為數(shù)列。數(shù)列按項(xiàng)數(shù)的多少可分為:數(shù)列按項(xiàng)的增減性可分為:一.數(shù)列的基本知識①通項(xiàng)公式數(shù)列{an}的第n項(xiàng)與序號n之間的關(guān)系式。②遞推關(guān)系式數(shù)列{an}的任意連續(xù)若干項(xiàng)所滿足的關(guān)系式。斐波那契數(shù)列一.數(shù)
2025-04-30 18:12
【總結(jié)】數(shù)列與不等式專題七????????111.2()(12)31?????????????nnnnnnnnnSnSaaSSnaaa數(shù)列概念定義:按一定次序排
2024-11-11 08:47
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件32《等差數(shù)列》一、概念與公式若數(shù)列{an}滿足:an+1-an=d(常數(shù)),則稱{an}為等差數(shù)列.n項(xiàng)和公式二、等差數(shù)列的性質(zhì):有窮等差數(shù)列中,與首末兩項(xiàng)距離相等的兩項(xiàng)和相等,即:特別地,
2024-11-11 05:49
【總結(jié)】走向高考·數(shù)學(xué)路漫漫其修遠(yuǎn)兮吾將上下而求索新課標(biāo)版·二輪專題復(fù)習(xí)專題三數(shù)列走向高考·二輪專題復(fù)習(xí)·新課標(biāo)版·數(shù)學(xué)專題三數(shù)列專題三第二講走向高考·二輪專題復(fù)習(xí)·新課標(biāo)版·數(shù)學(xué)
2025-01-07 13:17
【總結(jié)】求數(shù)列通項(xiàng)貴港市高級中學(xué)數(shù)學(xué)組曾偉君na一.基礎(chǔ)知識梳理求數(shù)列通項(xiàng),大體可分為以下三個模塊:1.利用公式:,;求通項(xiàng).nana1(1)naa
2024-11-10 00:25
【總結(jié)】等差與等比數(shù)列綜合(2)作業(yè)訂正:兩個等差數(shù)列{an}{bn},a1=0,b1=-4,Sk,Sk’分別是這兩個數(shù)列前k,項(xiàng)和,若Sk+Sk’=0,則ak+bk=?變:數(shù)列{an+b},a,b為常數(shù),a1時,比較Sn、n(a+b)、n(an+b)題題通23練45頁10(1)已知數(shù)列{},=2
2025-07-25 15:40
【總結(jié)】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件15《等差數(shù)列、等比數(shù)列》)(1nfmaann???考試背景遞推列:)(1nfmaann???在06-08年的高考中,歷年都有涉及,如(不完全統(tǒng)計):06年:全國理Ⅰ,福建;07年:全國理Ⅰ,理Ⅱ;08年:全國理Ⅱ.一、基礎(chǔ)知識3.
2024-11-11 02:52
【總結(jié)】高三第一輪復(fù)習(xí)《必修五第二章數(shù)列》?第一節(jié)數(shù)列的概念與簡單表示法在教學(xué)中要充分發(fā)揮學(xué)生的主體地位,盡量讓學(xué)生獨(dú)立完成包括例題在內(nèi)的題目,教師在于對方法和規(guī)律的總結(jié),在于引導(dǎo)。知識點(diǎn)考試大綱說明考情分析數(shù)列的概念和簡單表示種簡單的表示方法(列表、圖象、通項(xiàng)公式)
2025-08-07 10:50
【總結(jié)】數(shù)列的通項(xiàng)公式及求和通項(xiàng)的求法{特殊數(shù)列{等差數(shù)列等比數(shù)列一般數(shù)列an=S1(n=1),Sn-Sn-1(n≥2).累加若an-an-1=f(n)累積1?nnaa=f(n)湊等比an=pan-1+q猜想、
2025-07-25 15:41
【總結(jié)】2022/2/41學(xué)軍課件模板高三數(shù)學(xué)第一輪復(fù)習(xí)2022/2/42學(xué)軍課件模板學(xué)習(xí)目標(biāo)1、理解等差數(shù)列的概念、通項(xiàng)公式、等差中項(xiàng)公式,會用公式解決問題2、掌握等差數(shù)列的前n項(xiàng)和公式,體會等差數(shù)列的通項(xiàng)及等差數(shù)列的前n項(xiàng)和可分別表示為一次函數(shù)和二次函數(shù)3、探索并總結(jié)等差數(shù)列的性質(zhì),會運(yùn)用性質(zhì)解決有關(guān)問題