【總結(jié)】平面向量單元測試題(考試時間120分鐘總分150分)一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.向量a=(1,-2),向量a與b共線,且|b|=4|a|.則b=()A.(-4,8)B.(-4,8)或(4,-8)C.(4,-8)D.(8,4)
2025-03-25 01:22
【總結(jié)】用心愛心專心第八章平面向量知識網(wǎng)絡第1講向量的概念與線性運算★知識梳理★1.平面向量的有關(guān)概念:(1)向量的定義:既有____大小又有方向_________的量叫做向量.(2)表示方法:用有向線段來表示向量.有向線段的____長度_____表示向量的大小,用
2025-01-09 14:49
【總結(jié)】......平面向量題型歸納一.向量有關(guān)概念:【任何時候?qū)懴蛄繒r都要帶箭頭】1.向量的概念:既有大小又有方向的量,記作:或。注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平移)。例:已知A
2025-03-25 01:23
【總結(jié)】第五章檢測題一、選擇題:,下列結(jié)論正確的是A.|a|+|b|=|a+b| B.|a|-|b|=|a-b|C.|a|+|b|>|a+b| D.|a|+|b|≥|a+b|解析:在三角形中,兩邊之和大于第三邊,當a與b同向時,取“=”號.答案:D,,且||=||,那么四邊形ABCD為A.平行四邊形 B.菱形C.長方形
2025-08-04 16:18
【總結(jié)】平面向量復習講義一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平移)。2.零向量:長度為0的向量叫零向量,記作:,注意零向量的方向是任意的;3.單位向量:長度為一個單位長度的向量叫做單位向量(與共線的單位向量是);4.相等向量:長度相等且方向相同的兩個向量叫相等向量,相等
2025-04-17 01:00
【總結(jié)】第一節(jié)平面向量的概念及其線性運算1.向量的有關(guān)概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:長度為0的向量,其方向是任意的.(3)單位向量:長度等于1個單位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共線向量,規(guī)定:0與任一向量共線.(5)相等向量:長度相等且方向相同的向量.(6)相反向量:長度相等且方向相反的向量.
2025-04-16 23:06
【總結(jié)】平面向量基礎題一、高考真題體驗1.(2015新課標卷I)已知點,向量,則向量()(A)(B)(C)(D)2.(2015新課標卷II)已知,,則()A.B.C.D.3.(2014新課標卷I)設分別為的三邊的中點,則A.B.C.D.二、知識清單訓練【平
【總結(jié)】平面向量經(jīng)典例題:1.已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線,則實數(shù)λ等于( )A.-2 B.-C.-1 D.-[答案] C[解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b與c共線,∴-2(2+λ)-2λ=0,∴λ=-1.2.(文)已知向量a=(,1),b=(0,1),c=(k
【總結(jié)】平面向量專題復習考點一、平面向量的概念,線性表示及共線定理題型一、平面向量的概念1.給出下列命題:①若|a|=|b|,則a=b;②若A,B,C,D是不共線的四點,則=是四邊形ABCD為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥( )A.②③ B.①②C.③④D.④⑤2.設a
2025-04-17 02:37
【總結(jié)】高一數(shù)學班講義1平面向量一、向量的有關(guān)概念:既有大小又有方向的量叫做向量.向量的大小叫
2025-01-10 04:39
【總結(jié)】中考數(shù)學平面向量 初中數(shù)學知識點:平面向量 向量的定義: 既有方向又有大小的量叫做向量。 向量的表示: 具有方向的線段叫做有向線段,以A為起點,B為終點的有向線段記作...
2024-12-06 03:06
【總結(jié)】平面向量的概念及線性運算A組 專項基礎訓練一、選擇題(每小題5分,共20分)1.給出下列命題:①兩個具有公共終點的向量,一定是共線向量;②兩個向量不能比較大小,但它們的模能比較大小;③λa=0(λ為實數(shù)),則λ必為零;④λ,μ為實數(shù),若λa=μb,則a與b共線.其中錯誤命題的個數(shù)為 ( )A.1 B.2 C.3 D.4
【總結(jié)】平面向量的線性運算一、選擇題1.若是任一非零向量,是單位向量,下列各式①||>||;②∥;③||>0;④||=±1;⑤=,其中正確的有()A.①④⑤ B.③ C.①②③⑤ D.②③⑤2.O是所在平面內(nèi)一點,D為BC邊上中點,,則()A. B. C. D.3.把平面上所有單位向量歸結(jié)到共同的始點,那么這些向量的終點所
【總結(jié)】4.平面向量的基本定理、平面向量的坐標表示及平面向量的坐標運算.5.平面向量的數(shù)量積及向量的應用.1.向量的概念,向量的幾何表示,共線向量的概念.2.向量的加法、減法法則.3.實數(shù)與向量的積、兩個向量共線的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關(guān)長度、角度和垂直的
2025-05-19 17:09
【總結(jié)】......平面向量的線性運算學習過程知識點一:向量的加法(1)定義已知非零向量,在平面內(nèi)任取一點A,作=,=,則向量叫做與的和,記作,即=+=.求兩個向量和的運算,叫做叫向量的加法.這種求向量和的方法,稱為向量加法的三角形