【總結(jié)】《平面向量數(shù)量積的物理背景及其含義》教學(xué)目標(biāo)?;?;?;?.?教學(xué)重點(diǎn):平面向量的數(shù)量積定義?教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用問(wèn)題1:我們研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么?一探究?問(wèn)題2:我們是怎
2025-11-14 11:29
【總結(jié)】復(fù)習(xí)例題講解小結(jié)回顧引入新課講解性質(zhì)講解課堂練習(xí)一般地,實(shí)數(shù)λ與向量a的積是一個(gè)向量,記作λa,它的長(zhǎng)度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時(shí),λa的方向與a方向相同;當(dāng)λ0時(shí),λa
2025-10-10 17:18
【總結(jié)】課題:平面向量的數(shù)量積(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握平面向量數(shù)量積的坐標(biāo)表示;2、掌握向量垂直的坐標(biāo)表示的等價(jià)條件?!菊n前預(yù)習(xí)】1、(1)已知向量a和b的夾角是3?,|a|=2,|b|=1,則(a+b)2
2025-11-26 00:28
【總結(jié)】第3課時(shí)平面向量的數(shù)量積基礎(chǔ)過(guò)關(guān)1.兩個(gè)向量的夾角:已知兩個(gè)非零向量和,過(guò)O點(diǎn)作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時(shí),與;當(dāng)θ=180°時(shí),與;如果與的夾角是90°,我們說(shuō)與垂直,記作.2.兩個(gè)向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個(gè)向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時(shí),夾角θ=
2025-11-03 16:44
【總結(jié)】向量數(shù)量積的物理背景與定義復(fù)習(xí)回顧x1+x2y1+y2x1-x2y1-y2λx1λy11、若向量a=(x1,y1),b=(x2,y2)則向量a+b=(,)
2025-11-08 17:33
【總結(jié)】平面向量的數(shù)量積學(xué)習(xí)目標(biāo):、夾角平面向量的數(shù)量積的定義已知兩個(gè)非零向量a和b,它們的夾角為?,我們把數(shù)量叫做a與b的數(shù)量積(或內(nèi)積),記作a·b,即?cos||||ba?c
2025-11-09 08:49
【總結(jié)】§平面向量的數(shù)量積【學(xué)習(xí)目標(biāo)、細(xì)解考綱】的意義;體會(huì)數(shù)量積與投影的關(guān)系。。,可以處理有關(guān)長(zhǎng)度、角度和垂直問(wèn)題?!局R(shí)梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即a
2025-11-23 08:37
【總結(jié)】第二章平面向量,第一頁(yè),編輯于星期六:點(diǎn)三十三分。,§6平面向量數(shù)量積的坐標(biāo)表示,第二頁(yè),編輯于星期六:點(diǎn)三十三分。,,自主學(xué)習(xí)梳理知識(shí),課前基礎(chǔ)梳理,第三頁(yè),編輯于星期六:點(diǎn)三十三分。,,第四頁(yè),編...
2025-10-13 18:51
【總結(jié)】計(jì)算下列各式a?4)3)(1(??ababa?????????)(2)(3)2(a?12??b?5?)23()32)(3(cbacba???????????cba???25????課前小測(cè)))(())()(4(2121bcttbctt?????ctbt2122??復(fù)習(xí)思考:向量的加法
2025-11-09 12:10
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示四川省沐川中學(xué)劉少民平面向量數(shù)量積復(fù)習(xí)a和b,它們的夾角為θ,則a&
2025-10-31 05:07
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運(yùn)算性質(zhì),逐題計(jì)算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2025-11-02 09:01
【總結(jié)】第二章平面向量平面向量的數(shù)量積平面向量數(shù)量積的坐標(biāo)表示、模、夾角1.理解并掌握平面向量的數(shù)量積的坐標(biāo)表示及運(yùn)算.(重點(diǎn))2.能夠用兩個(gè)向量的坐標(biāo)來(lái)判斷向量的垂直關(guān)系.(難點(diǎn))3.增強(qiáng)用向量法與坐標(biāo)法來(lái)處理向量問(wèn)題的能力.(易混點(diǎn))1.兩向量的數(shù)量積與兩向量垂直的坐標(biāo)表示設(shè)向量a=(x1,y
2025-11-25 18:51
【總結(jié)】由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角都可以由向量的線性運(yùn)算及數(shù)量積表示出來(lái),因此,利用向量方法可以解決平面幾何中的一些問(wèn)題。平面幾何中的向量方法例1、證明平行四邊形四邊平方和等于兩對(duì)角線平方和ABDC已知:平行四邊形ABCD。求證:
2025-08-01 17:29
【總結(jié)】平面向量的數(shù)量積1、向量的夾角ababOAB??18000???????或30當(dāng)時(shí),則稱a與b互相垂直,記作a⊥b.2???10當(dāng)時(shí),則稱a與b同向.0??20當(dāng)時(shí),則稱a與b反向.???注:
2025-11-14 12:04