【正文】
with Varying Size[J]. Math. Bi01.1990, 28: 257270. [18] MENALORCA J, HETHCOTE H W: Dynamic Models of Infectious Diseases as Regulators of Population Sizes[J]. Math., 30: 6937 16. [19]李健全,張娟,馬知恩.一類(lèi)帶有一般接觸率和常數(shù)輸入的流行病模型的全局分析 [J].應(yīng)用數(shù)學(xué)和力學(xué), 2022, 18(4): 359. 367. [20]陳軍杰.一類(lèi)具有常數(shù)遷入的且總?cè)丝谧兓?SIRI傳染病模型的穩(wěn)定性 [J].生物數(shù)學(xué)學(xué)報(bào), 2022, 19(3): 3lO. 316. 18 [21] MICHAEL Y LI, JAMES S. Global Dynamic of SEIR Model in Epidemiology[J]. Math. Biosci. 1995, 16: 155— 164. [22]MICHAEL Y LI, JOHN R. Global Dynamic of SEIR Model with Varying Total Populmion Size[J]. Math. Biosci. 1999, 160: 191—213. [23] FAN MENG MICHAEL Y LI, WANG KE. Global Stability of an SEIS Epidemic Model with Recruitment and a Varying Total Populmion Size[J]. Math. Biosci. 2022, 170: 199208. [24]MICHAEL Y LI. Global Dynamics of an SEIR Epidemic Model with Vertical 48. Transmission[J]. SIAM J. Appl. Math, 2022, 62(1):5869. 19 [25] 劉爍,李建全,王拉娣.一類(lèi)帶有非線(xiàn)性傳染率的 SEIR傳染病模型的全局分析 [J].?dāng)?shù)學(xué)實(shí)踐與認(rèn)識(shí), 2022, 37(23): 5459. [26]剛毅,王蓮花 .具有常數(shù)輸入的 SEIR和 SEIS組合傳染病模型 [J].河南理工大學(xué)學(xué)報(bào), 2022, 2( 28) :15. [27] 原三領(lǐng), ’韓麗濤,馬知恩.一類(lèi)潛伏期和染病期均傳染的流行病模型 [J].生物數(shù)學(xué)學(xué)報(bào), 2022, 1 6(4): 392. 398. [28]徐文雄,張?zhí)祝活?lèi)非線(xiàn)性 SEIRS流行病傳播數(shù)學(xué)模型 [J].西北大學(xué)學(xué)報(bào), 2022, 34(6): 627— 630. [29] 張彤,方道元.一類(lèi)潛伏期和染病期均傳染且具非線(xiàn)性傳染率的流行病模型 [J].生物數(shù)學(xué)學(xué)報(bào), 2022, 21(3): 345. 350. [30] HETHCOTE H W: A Thousand and one Epidemic Model[M]. New York: SprinterVerlag, 1 994: 504— 5 1 5. 20 [36] HETHCOTE H W. The Mathematics of Infectious Diseases[J].SIAM Review,2022, 42: 599653. 21 Thank you for your attention!