【導讀】若分別是軸上同方向的兩個單位向量。唯一的實數(shù)組使.pxaybzc???若空間的一個基底的三個基向量互相垂直,且長為1,直角坐標系,點叫原點,分別稱為平面,平面,在空間直角坐標系中,如圖給定空間直角坐標系和向量,求證平面證明:不妨設已知正方體的棱長為1個單。分別以為坐標向量建立空間直。例5:利用向量的方法求證“三垂線定理”。3.點B是點在坐標平面內的射影,求。
【總結】導入新課復習上一節(jié)課,我們借助“類比思想”把平面向量的有關概念及加減運算擴展到了空間.(1)加法法則及減法法則平行四邊形法則或三角形法則.(2)運算律加法交換律及結合律.兩個空間向量的加、減法與兩個平面向量的加、減法實質是
2025-06-12 19:01
【總結】數(shù)量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數(shù)量積注:①兩個向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2025-01-22 01:08
【總結】§平面向量的坐標運算(二)知識回顧平面向量的坐標表示分別與x軸、y軸方向相同的兩單位向量i、j作為基底,任一向量a,有且只有一對實數(shù)x、y,使得Oxyijaa=xi+yj=(x,y)1.設則
2025-10-31 06:28
【總結】海鹽高級中學高新軍復習引入:?若e1、e2是同一平面內的兩個不共線向量,則對于這一平面內的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運算
2025-08-05 06:24
【總結】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內的兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內所
2025-11-03 17:25
【總結】第七章立體幾何第六節(jié)空間向量及其運算抓基礎明考向提能力教你一招我來演練返回[備考方向要明了]考什么.,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標表示.
2025-05-03 08:38
【總結】OxyijaA(x,y)a兩者相同3.兩個向量相等的充要條件,利用坐標如何表示?坐標(x,y)一一對應向量a1.以原點O為起點作OA=a,點A的位置由誰確定?2.點A的坐標與向量a的坐標有什么關系?由a唯一確定a=bx1=x2且y1=y2
2025-08-05 06:17
【總結】空間向量及其運算共線向量定理共面向量定理0//aabbabb???對空間任意兩個向量、(),的充要條件是存在實數(shù),使=.,,,abpabxypxayb如果兩個向量不共線,則向量與向量共面的充要
2025-07-23 08:50
【總結】課前探究學習課堂講練互動活頁規(guī)范訓練掌握空間向量夾角的概念及表示方法,掌握兩個向量的數(shù)量積概念、性質和計算方法及運算規(guī)律.掌握兩個向量的數(shù)量積的主要用途,會用它解決立體幾何中一些簡單的問題.空間向量的數(shù)量積運算【課標要求】【核心掃描】空間向量的數(shù)量積運算.(重點)利用空間向量的數(shù)量積求夾角及距離.(
【總結】復習引入?.(1)21向量的一組基底有叫做表示這一平面內所,我們把不共線向量ee(2)基底不惟一,關鍵是不共線;進行分解;的條件下、在給出基底由定理可將任一向量21(3)eea.,,(4)2121惟一確定的數(shù)量、、是被、分解形式惟一基底給定時eea??若e1、e2是同一平面內的兩個不共線向量
2025-11-08 15:02
【總結】(了解空間向量的概念/掌握空間向量的線性運算/掌握空間向量的數(shù)量積,能運用向量的數(shù)量積判斷向量的共線與垂直)空間向量及其運算1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量.(1)空間的一個就是一個向量.(2)向量一般用有向線段表示.同向等長的有向線段表示
2025-05-03 02:38
【總結】第六節(jié)空間向量知識提要1.空間向量的概念:在空間,我們把具有和的量叫做向量。2.空間向量的運算。定義:與平面向量運算一樣,空間向量的加法、減法與數(shù)乘運算如下(如圖)。;;運算律:⑴加法交換律:⑵加法結合律:⑶數(shù)乘分配律:3.共線向量。(1)如果表示空間向量的有向線段所在的直線
2025-07-23 04:56
【總結】空間向量運算的坐標表示勉縣二中楊恒一、向量的直角坐標運算則設),,,(),,,(a222111zyxbzyx????ba);,,(332211yxyxyx?????ba);,,(332211yxyxyx????a?);,,(111zyx?????ba;332211yxyxyx???ba//)
2025-11-08 23:48
【總結】設是平面內所有向量的一組基底,則下面四組向量中,不能作為基底的是()ABCD21ee??,2121eeee??????和12216423eeee????
2025-07-24 04:31
【總結】××××中學教學設計方案年月日星期第節(jié)課題平面向量的坐標運算章節(jié)第五章第二節(jié)教學目的知識目標1.了解平面向量的基本定理,理解平面向量的坐標的概念,會用坐標形式進行向量
2025-08-04 16:11